flink读取hive写入http接口

这篇博客介绍了如何使用Flink从Hive数据库读取数据,并将处理后的数据发送到HTTP接口。步骤包括创建Hive表、配置pom.xml、编写Flink代码、设置sink、提交任务jar以及配置flink-conf.yaml文件,最后展示了数据成功接收的流程。
摘要由CSDN通过智能技术生成

目录

0、创建hive数据

1、pom.xml

2、flink代码 

3、sink 

4、提交任务jar

6、数据接收


flink-1.17.2 jdk1.8
hive-3.1.3 hadoop3.3.6
password http

0、创建hive数据

/cluster/hive/bin/beeline
!connect jdbc:hive2://ip:10000


create database demo;
drop table demo.example;

CREATE TABLE demo.example(
 `id` STRING COMMENT '主键',
 `name` STRING COMMENT '名称',
 `ip` STRING COMMENT 'ip地址',
 `time` STRING COMMENT '创建时间',
 `info` STRING COMMENT '信息',
 `msg` STRING COMMENT '消息',
 `oper` STRING COMMENT '操作',
 `count` DECIMAL(16,2) COMMENT '次数',
 `status` DECIMAL(16,2) COMMENT '状态'
) COMMENT '例子'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

insert into 插入数据

1、pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>com.example.cloud</groupId>
    <artifactId>Hive3Flink2HttpStream</artifactId>
    <version>1.0.0</version>
    <name>Hive3Flink2HttpStream</name>
    <properties>
        <java.version>1.8</java.version>
        <flink.version>1.17.2</flink.version>
        <hive.version>3.1.2</hive.version>
        <scala.binary.version>2.12</scala.binary.version>
        <hadoop.version>3.3.6</hadoop.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-statebackend-rocksdb</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
            <exclusions>
                <exclusion>
                    <artifactId>jaxb-api</artifactId>
                    <groupId>javax.xml.bind</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>reload4j</artifactId>
                    <groupId>ch.qos.reload4j</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>slf4j-api</artifactId>
                    <groupId>org.slf4j</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>nimbus-jose-jwt</artifactId>
                    <groupId>com.nimbusds</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>netty-transport-native-unix-common</artifactId>
                    <groupId>io.netty</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>snappy-java</artifactId>
                    <groupId>org.xerial.snappy</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>stax2-api</artifactId>
                    <groupId>org.codehaus.woodstox</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>commons-compress</artifactId>
                    <groupId>org.apache.commons</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>commons-io</artifactId>
                    <groupId>commons-io</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>commons-logging</artifactId>
                    <groupId>commons-logging</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>commons-text</artifactId>
                    <groupId>org.apache.commons</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>jackson-annotations</artifactId>
                    <groupId>com.fasterxml.jackson.core</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>jackson-core</artifactId>
                    <groupId>com.fasterxml.jackson.core</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>curator-framework</artifactId>
                    <groupId>org.apache.curator</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>netty-buffer</artifactId>
                    <groupId>io.netty</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>netty-common</artifactId>
                    <groupId>io.netty</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>commons-codec</artifactId>
                    <groupId>commons-codec</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>netty-resolver</artifactId>
                    <groupId>io.netty</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>netty-transport</artifactId>
                    <groupId>io.netty</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>netty-codec</artifactId>
                    <groupId>io.netty</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>commons-cli</artifactId>
                    <groupId>commons-cli</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
            <exclusions>
                <exclusion>
                    <artifactId>jackson-annotations</artifactId>
                    <groupId>com.fasterxml.jackson.core</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>jackson-core</artifactId>
                    <groupId>com.fasterxml.jackson.core</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>jackson-databind</artifactId>
                    <groupId>com.fasterxml.jackson.core</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>commons-cli</artifactId>
                    <groupId>commons-cli</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
            <exclusions>
                <exclusion>
                    <artifactId>netty-handler</artifactId>
                    <groupId>io.netty</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>netty-transport-native-epoll</artifactId>
                    <groupId>io.netty</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>commons-cli</artifactId>
                    <groupId>commons-cli</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>com.squareup.okhttp3</groupId>
            <artifactId>okhttp</artifactId>
            <version>4.10.0</version>
            <exclusions>
                <exclusion>
                    <artifactId>kotlin-stdlib-common</artifactId>
                    <groupId>org.jetbrains.kotlin</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>kotlin-stdlib</artifactId>
                    <groupId>org.jetbrains.kotlin</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-hive_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-exec</artifactId>
            <version>${hive.version}</version>
            <exclusions>
                <exclusion>
                    <artifactId>hadoop-annotations</artifactId>
                    <groupId>org.apache.hadoop</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>hadoop-auth</artifactId>
                    <groupId>org.apache.hadoop</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>hadoop-common</artifactId>
                    <groupId>org.apache.hadoop</groupId>
                </
java flink是一个高性能的分布式流式计算框架,可以实现大规模的数据处理和分析。而hive是一个分布式数据仓库工具,可以用于存储和查询大规模的结构化数据。redis是一个高性能的内存数据库,可以用于存储和检索数据。 要实现java flink读取hive表中的数据写入redis,我们可以按照以下步骤进行操作: 1. 在java flink中,首先需要配置并连接到hive数据库。可以使用FlinkHiveCatalog来创建一个连接到Hive的catalog,并设置相关的hive metastore地址、用户名和密码等。 2. 根据需要,编写flink程序来读取hive表的数据。可以使用flink的DataStream或Table API来读取hive数据,并将其转换为适当的数据流或表。 3. 在准备好数据之后,我们可以使用flink的RedisSink来将数据写入redis中。在使用RedisSink之前,需要先引入flink-connector-redis的依赖包,并在flink配置文件中配置好redis的连接参数,如redis的主机地址、端口号、密码等。 4. 编写代码将数据写入redis。可以根据数据的特点,选择将整个数据写入一个redis数据结构中,或者将数据分解为多个key-value对存储到redis中。 5. 在代码编写完成后,我们可以使用flink提供的命令或者IDE工具来运行flink程序,它会自动连接到hive数据库和redis,并完成数据读取写入。 通过以上步骤,java flink就可以实现读取hive表中的数据写入redis。这样可以通过flink的分布式计算和hive数据存储能力,结合redis的高速读写能力,实现大规模数据的处理和查询。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值