凸优化中的强对偶性与内点法
1. 强对偶性
1.1 凸优化问题回顾
在凸优化领域,我们已经研究了多种类型的问题,如线性规划(LP)、最小二乘法、二次规划(QP)、二阶锥规划(SOCP)和半定规划(SDP)。此外,还有一类凸优化问题——锥规划(CP),不过由于其需要大量的数学概念、定义和技术,且应用较少,我们将重点研究通用的算法,这些算法可应用于一般的QP、SOCP和SDP问题。这些算法基于强对偶性和KKT条件。
1.2 原问题与对偶问题
1.2.1 原问题
凸优化的标准形式为:
[
\begin{align }
\min\ f(x) &: f_i(x) \leq 0, i \in {1, \ldots, m}\
Ax - b &= 0
\end{align }
]
其中,(f(x)) 和 (f_i(x)) 是凸函数,(A \in R^{p\times d}) 且 (p < d)。不失一般性,假设 (rank(A) = p),否则可移除 (A) 中的相关行使其满秩。上述问题即为原问题。
1.2.2 拉格朗日函数
为了定义对偶问题,我们需要引入拉格朗日函数 (L(x, \lambda, \nu)),它有三个参数:
- (x):感兴趣的优化变量。
- (\lambda):大小为 (m) 的实值向量,与不等式约束的数量一致,(\lambda := [\lambda_1, \ldots, \lambda_m]^T)。
- (\nu):大小为 (p) 的实
订阅专栏 解锁全文
38

被折叠的 条评论
为什么被折叠?



