之所以记录一下简谐震动,是因为最近在看拉普拉斯变换的时候,发现简谐震动和正弦有关系,正弦和傅里叶级数有关,傅里叶级数直接导出傅里叶变换,而傅里叶变换是拉普拉斯变换的一个特例,所以从简单的简谐运动开始分析,记录一下学习的足迹.
简谐运动,又称为简谐震动,谐震,SHM(simple Harmonic motion), 即是最简单也最基本的一种机械震动,当某物体进行简谐运动时,物体所受到的力跟位移成正比,并且力总是指向平衡位置.
如果用表示物体收到的回复力,用
表示物体对于平衡位置的位移,根据胡克定律,
正比于
,她们之间的关系可以用下式来表示:
式中的是回复力与位移成正比的比例系数,负号的意思是,会复力的方向总跟物体位移的方向相反.
根据牛二定律
一定质量的物体,加速度和物体所收到的和外力大小成正比,跟合力的方向相同,并且如果是孤立系统,系统的机械能守恒.
动力学方程:
对于简谐运动,其动力学方程是2阶微分方程,可以由牛顿第二运动定律得到:
所以:
也就是:
这是一个二阶常系数齐次线性微分方程
可以先求出它的两个解,如果他们的比不为常数,也就是
线性无关,那么
就是方程的一个通解.
当为常数时,指数函数
和它的各阶导数都只相差一个常数因子,由于指数函数这个特点,我们可以用
来尝试,看能佛选取适当的
,使得
满足上面方程的解.
所以:
所以
所以,它的两个特根为:
所以:
所以,方程的通解是:
转换形式:
是由初始条件决定的常数,取平衡位置为原点,每一项都有物理意义,
是振幅,
是角频率,
是相位.
根据速度,加速度与位移量的关系,可以得到:
机械能守恒:
系统总机械能为动能+弹簧势能:
所以
能量守恒得证,根据这个结果,系统的总能量和弹性系数以及最大振幅有关,说白了,在时刻,施加给系统的第一推动位置,决定了系统的总能量。
一图胜千言,看Geogebra如何描绘整个过程:
最外面蓝色圆圈表示位移变化,中间的绿色圆表示速度变化,最内层红色圆表示加速度的变化。
数学中有一类特殊的函数,它们有着非常良好的特性,比如三角函数,e指数函数,幂函数等等,你可以对它们不停求导而不会遇到奇点,也可以对它们进行泰勒展开,得到的收敛半径无穷大。更为特殊的是,某种意义上,它们似乎是构成其它函数的“元”函数,大部分的函数都可以用以上几类函数做近似表示,它将我们从时域带入频域,进入另一个和我们的世界对偶的新世界。为什么三角函数这么特殊?这是科学家讨论的话题,我等小民无从知晓,不过,冥冥中有种感觉,这种基础的问题可能会将我们导向研究世界的本质,现代物理认为世界上的大部分现象都与波有关,包括宏观物体物质波,或许这种关系里面隐藏着更为深刻的真相,现代宇宙学中的“弦理论”,认为世界十一维的,所有的物质都是由极其微小的单元”弦“构成,弦的震动构成了多姿多彩的世界,又是震动,又是圆,这中间,是否蕴藏着某种更本质的东西等待我们去发现。