目录
基本概念
描述
振幅: 简谐振动的物体离开平衡位置的最大距离。
周期: 物体做一次完全振动所经历的时间。
频率: 单位时间内物体所作完全振动的次数。
角频率:
相位:
初相:
y-t图
振动方程
x = A c o s ( ω t + φ ) x = A cos (\omega t+φ) x=Acos(ωt+φ)
旋转矢量
- x轴正半轴为起始线。
角频率区别于转动中的角速度,
角频率是由作简谐振动的物体本身的性质所决定的。
角频率可以看作旋转矢量的角速度。
初相可以看作旋转矢量的初始位置。
相位可以看作旋转矢量的任意位置表达。
简谐振动的判断
- x = A cos(ωt + φ)
- F = -kx
- a = -ω2x
简谐振动的能量
E = E k + E p = 1 2 k A 2 E = E_k + E_p = \frac{1}{2}kA^2 E=Ek+Ep=21kA2
已考虑重力势能。
简谐振动的合成
相量图的合成
x 1 = A 1 c o s ( ω t + φ 1 ) x_1 = A_1 cos(\omega t + φ_1) x1=A1cos(ωt+φ1)
x 2 = A 1 c o s ( ω t + φ 2 ) x_2 = A_1 cos(\omega t + φ_2) x2=A1cos(ωt+φ2)
(1) 两个 同方向同频率
一般的:
A
=
A
1
2
+
A
2
2
+
2
A
1
A
2
c
o
s
(
φ
2
−
φ
1
)
A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2cos(φ_2 - φ_1)}
A=A12+A22+2A1A2cos(φ2−φ1)
t a n φ = A 1 s i n φ 1 + A 2 s i n φ 2 A 1 c o s φ 1 + A 2 c o s φ 2 tan~φ = \frac{A_1 sin~φ_1 + A_2 sin~φ_2}{A_1 cos~φ_1+ A_2 cos~φ_2} tan φ=A1cos φ1+A2cos φ2A1sin φ1+A2sin φ2
特殊的:
如果
φ
2
−
φ
1
=
2
k
π
,
k
=
±
1
φ_2 - φ_1 = 2k\pi,k=\pm 1
φ2−φ1=2kπ,k=±1