简谐振动

基本概念

描述

振幅: 简谐振动的物体离开平衡位置的最大距离。
周期: 物体做一次完全振动所经历的时间。
频率: 单位时间内物体所作完全振动的次数。
角频率:
相位:
初相:

y-t图

振动方程

x = A c o s ( ω t + φ ) x = A cos (\omega t+φ) x=Acos(ωt+φ)

旋转矢量

  1. x轴正半轴为起始线。

角频率区别于转动中的角速度,
角频率是由作简谐振动的物体本身的性质所决定的。
角频率可以看作旋转矢量的角速度。

初相可以看作旋转矢量的初始位置。
相位可以看作旋转矢量的任意位置表达。

简谐振动的判断

  1. x = A cos(ωt + φ)
  2. F = -kx
  3. a = -ω2x

简谐振动的能量

E = E k + E p = 1 2 k A 2 E = E_k + E_p = \frac{1}{2}kA^2 E=Ek+Ep=21kA2

已考虑重力势能。

简谐振动的合成

相量图的合成

x 1 = A 1 c o s ( ω t + φ 1 ) x_1 = A_1 cos(\omega t + φ_1) x1=A1cos(ωt+φ1)

x 2 = A 1 c o s ( ω t + φ 2 ) x_2 = A_1 cos(\omega t + φ_2) x2=A1cos(ωt+φ2)

(1) 两个 同方向同频率

一般的:
A = A 1 2 + A 2 2 + 2 A 1 A 2 c o s ( φ 2 − φ 1 ) A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2cos(φ_2 - φ_1)} A=A12+A22+2A1A2cos(φ2φ1)

t a n   φ = A 1 s i n   φ 1 + A 2 s i n   φ 2 A 1 c o s   φ 1 + A 2 c o s   φ 2 tan~φ = \frac{A_1 sin~φ_1 + A_2 sin~φ_2}{A_1 cos~φ_1+ A_2 cos~φ_2} tan φ=A1cos φ1+A2cos φ2A1sin φ1+A2sin φ2

特殊的:
如果 φ 2 − φ 1 = 2 k π , k = ± 1 φ_2 - φ_1 = 2k\pi,k=\pm 1 φ2φ1=2kπk=±1

(2) 两个 互相垂直的同频率

(3) 多个 同方向同频率

(4) 两个 同方向不同频率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值