多元(二元)函数极限的存在性问题

高等数学课本对多元函数极限的描述,用\varepsilon \mapsto \sigma描述如下:

设二元函数

f(P)=f(x,y)

的定义域为D,P_0(x_0,y_0)是D的聚点,如果存在常数A,对于任意给定的正数\varepsilon,总存在正数\sigma,使得当点P(x,y)\in D\cap U(p_0,\sigma )时,都有

\left | f(P)-A \right |=\left | f(x,y)-A \right | <\varepsilon

成立,那么就称常数A为函数f(x,y)当(x,y)->(x_0, y_0)的极限,记作

\lim_{(x,y)->(x_0, y_0)}f(x,y)=A

定义就是这个样子的,这里需要注意的是,所谓的二重极限存在,是指P(x,y)以任何方式趋近于P_0(x_0,y_0)时,f(x,y)都无限接近于A,因此,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P_0(x_0,y_0)时,即使f(x,y)无限接近某一确定值,我们还不能由此断定函数的极限存在,但是反过来,如果当P(x,y)以不同方式趋于P_0(x_0,y_0)时,f(x,y)趋于不同的值,那么就可以断定这个函数的极限不存在,下面用例子来说明这种情况:

函数

f(x,y)=\left\{\begin{matrix} \frac{xy}{x^2+y^2}, &x^2+y^2\neq 0 \\ 0, & x^2+y^2=0 \end{matrix}\right.

显然,当点P(x,y)沿x轴趋近于点(0,0)时,

\lim_{(x,y)->(0, 0)}f(x,y)=\lim_{x->0}f(x,0)=\lim_{x->0}0=0

当点P(x,y)沿y轴趋近于点(0,0)时,

\lim_{(x,y)->(0, 0)}f(x,y)=\lim_{y->0}f(0,y)=\lim_{y->0}0=0

虽然点P(x,y)以上述两种特殊方式(沿x轴或者y轴)趋于原点时函数的极限存在并且相等,但是,\lim_{(x,y)->(0, 0)}并不存在,这是因为当点P(x,y)沿着直线y=kx趋近于点(0,0)时,有

\lim_{(x,y)->(0, 0),y=kx}\frac{xy}{x^2+y^2}=\lim_{x->0}\frac{kx^2}{x^2+k^2x^2}=\frac{k}{1+k^2}

显然,它是随着k的值不同而改变的.

我喜欢用图说明问题,我们用geogebra绘制出这个函数的图像,图中黑色直线和z轴的交点红色点B,就是当沿着y=kx直线趋近于原点时候函数的极限值,可以看到这个极限值在(-0.5,0.5)之间上下变化,也就是说极限不是固定值,原函数没有极限.

B点的变化曲线如下图所示:

关于这幅图像,另外一个有意思的事情是,它竟然也是一个直纹面,三维视图中的黑颜色直线可以看成直纹面的母线,前面已经介绍过小蛮腰了.直纹面有无数种.你拿着一个棍子在空中胡乱比划,形成的三维面也是直纹面.

高观点下的初等数学中对这个问题有讨论,这本书中提到,如果f(x,y)满足下面两个条件,他在点\large (x_0,y_0)就是连续的:

1.在\large (x_0,y_0)有唯一的值。

2.已给无论多小的正数\large \delta,总可以找到一个异于零的\large \rho,使得对于一切满足

\large (x-x_0)^2+(y-y_0)^2 < \rho ^2

都有:

\large \left | f(x,y)-f(x_0,y_0) \right | < \delta

书中同样分析了上面的函数,只不过书中将函数多乘了系数2:

\large z=\frac{2xy}{x^2+y^2}

这个函数在一切的(x,y)连续,只有在(0,0)是例外,因为x=0,y=0时,分子,分母都为0,那么能否界定函数在(0,0)的值,使它在那里也保持连续?

引入极坐标

\large x=rcos(\theta ), y= r sin(\theta)

则当\large r\neq 0时,函数值是:

\large z=sin(2\theta)

也就是说,函数值只与(x,y)坐标与坐标平面的夹角有关,而与原点的远近无关。所以,当x,y沿着不同的y=kx接近坐标原点时,最终的极限值只和y=kx的斜率有关,而当r=0时,\large z=sin(2\theta)

仍然是多值的,无法确定一个值满足函数连续性的定义,所以不可能为(0,0)点找一个值,使函数连续。

函数在(0,0)的值并不能唯一确定,它可以是-1到+1的任何值,沿着原点的每条路径它却是连续的。

假若令函数在(0,0)有唯一的值,比如0,则连续函数定义中只有沿着y=0的路径接近原点才连续,不能保证沿着每条路径都连续。

函数图像是一个三阶直纹面,在力学中称为“圆柱性面”如下图所示,它的母线都平行于x-y平面并和z轴相交。


结束!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值