高等数学课本对多元函数极限的描述,用描述如下:
设二元函数
的定义域为D,是D的聚点,如果存在常数A,对于任意给定的正数
,总存在正数
,使得当点
时,都有
成立,那么就称常数A为函数f(x,y)当的极限,记作
定义就是这个样子的,这里需要注意的是,所谓的二重极限存在,是指以任何方式趋近于
时,f(x,y)都无限接近于A,因此,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于
时,即使f(x,y)无限接近某一确定值,我们还不能由此断定函数的极限存在,但是反过来,如果当P(x,y)以不同方式趋于
时,f(x,y)趋于不同的值,那么就可以断定这个函数的极限不存在,下面用例子来说明这种情况:
函数
显然,当点沿x轴趋近于点(0,0)时,
当点沿y轴趋近于点(0,0)时,
虽然点P(x,y)以上述两种特殊方式(沿x轴或者y轴)趋于原点时函数的极限存在并且相等,但是,并不存在,这是因为当点P(x,y)沿着直线y=kx趋近于点(0,0)时,有
显然,它是随着k的值不同而改变的.
我喜欢用图说明问题,我们用geogebra绘制出这个函数的图像,图中黑色直线和z轴的交点红色点B,就是当沿着y=kx直线趋近于原点时候函数的极限值,可以看到这个极限值在(-0.5,0.5)之间上下变化,也就是说极限不是固定值,原函数没有极限.
B点的变化曲线如下图所示:
关于这幅图像,另外一个有意思的事情是,它竟然也是一个直纹面,三维视图中的黑颜色直线可以看成直纹面的母线,前面已经介绍过小蛮腰了.直纹面有无数种.你拿着一个棍子在空中胡乱比划,形成的三维面也是直纹面.
高观点下的初等数学中对这个问题有讨论,这本书中提到,如果f(x,y)满足下面两个条件,他在点就是连续的:
1.在有唯一的值。
2.已给无论多小的正数,总可以找到一个异于零的
,使得对于一切满足
都有:
书中同样分析了上面的函数,只不过书中将函数多乘了系数2:
这个函数在一切的(x,y)连续,只有在(0,0)是例外,因为x=0,y=0时,分子,分母都为0,那么能否界定函数在(0,0)的值,使它在那里也保持连续?
引入极坐标
则当时,函数值是:
也就是说,函数值只与(x,y)坐标与坐标平面的夹角有关,而与原点的远近无关。所以,当x,y沿着不同的y=kx接近坐标原点时,最终的极限值只和y=kx的斜率有关,而当r=0时,
仍然是多值的,无法确定一个值满足函数连续性的定义,所以不可能为(0,0)点找一个值,使函数连续。
函数在(0,0)的值并不能唯一确定,它可以是-1到+1的任何值,沿着原点的每条路径它却是连续的。
假若令函数在(0,0)有唯一的值,比如0,则连续函数定义中只有沿着y=0的路径接近原点才连续,不能保证沿着每条路径都连续。
函数图像是一个三阶直纹面,在力学中称为“圆柱性面”如下图所示,它的母线都平行于x-y平面并和z轴相交。