对于多元函数 f ( x ) f(x) f(x)来说,证明其在某一点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处极限不存在的方法就是找到两条不同的趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的路径,使得 f ( x , y ) f(x,y) f(x,y)在这两条路径上趋于不同的值。
对于二元函数 f ( x , y ) f(x,y) f(x,y)来说, ( x , y ) (x,y) (x,y)沿任意路径趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)时二元函数 f ( x , y ) f(x,y) f(x,y)趋于同一个值A,则重极限 lim ( x , y ) → ( x 0 , y 0 ) f ( x , y ) \lim \limits_{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y) (x,y)→(x0,y0)limf(x,y)存在且也等于A.
这一性质常常用来证明二元函数 f ( x , y ) f(x,y) f(x,y)在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)这点的极限不存在,即找到两条趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的路径,使得二元函数 f ( x ) f(x) f(x)在这两条路径上趋于不同的值。然而,在绝大多数的数学分析教科书中,常常只介绍利用相对简单的径向路径来证明一个二元函数在某一点的极限不存在,即当二元函数 f ( x , y ) f(x,y) f(x,y)沿着 y = k x y=kx y=kx这些路径趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)时,若极限与径向的斜率 k k k相关,则二元函数 f ( x , y ) f(x,y) f(x,y)在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)这点的极限不存在。而这种方法对些相对较为复杂的二元函数 f ( x , y ) f(x,y) f(x,y)通常是失效的例如,考虑二元函数 f ( x , y ) = x 2 y 2 x 3 + y 3 f(x, y)=\frac{x^{2} y^{2}}{x^{3}+y^{3}} f(x,y)=x3+y3x2y2在 ( x , y ) (x,y) (x,y)趋于 ( 0 , 0 ) (0,0) (0,0)的极限时,不难发现 ( x , y ) (x,y) (x,y)沿着径向路径 y = k x y=kx y=kx的极限都为0.然而 f ( x , y ) = x 2 y 2 x 3 + y 3 f(x, y)=\frac{x^{2} y^{2}}{x^{3}+y^{3}} f(x,y)=x3+y3x2y2在 ( x , y ) (x,y) (x,y)趋于 ( 0 , 0 ) (0,0) (0,0)是不存在极限的,若考虑路径 y = − x + α 2 x 2 y=-x+\frac{\alpha}{2} x^{2} y=−x+2αx2,则
lim ( x , y ) → ( 0 , 0 ) x 2 y 2 x 3 + y 3 = lim y = − x + α 2 x 2 + 2 ( α 2 ) 3 x 3 − α x 2 + x ( α 2 ) 3 x 3 − 3 ( α 2 ) 2 x 2 + 3 α 2 x = 2 3 α \begin{aligned} &\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{3}+y^{3}}=\lim _{y=-x+\frac{\alpha}{2} x^{2}+2} \frac{\left(\frac{\alpha}{2}\right)^{3} x^{3}-\alpha x^{2}+x}{\left(\frac{\alpha}{2}\right)^{3} x^{3}-3\left(\frac{\alpha}{2}\right)^{2} x^{2}+3 \frac{\alpha}{2} x}\\ &=\frac{2}{3 \alpha} \end{aligned} (x,y)→(0,0)limx3+y3x2y2=y=−x+2αx2+2lim(2α)3x3−3(2α)2x2+32αx(2α)3x3−αx2+x=3α2
下面我们老考虑这些极限是怎样计算出来的
事实上,从解析几何的观点来看, ( x , y ) (x,y) (x,y)沿某一路径趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)可以被理解为 ( x , y ) (x,y) (x,y)在趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,