证明多元函数极限不存在的一个解法

对于多元函数 f ( x ) f(x) f(x)来说,证明其在某一点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处极限不存在的方法就是找到两条不同的趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的路径,使得 f ( x , y ) f(x,y) f(x,y)在这两条路径上趋于不同的值。
对于二元函数 f ( x , y ) f(x,y) f(x,y)来说, ( x , y ) (x,y) (x,y)沿任意路径趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)时二元函数 f ( x , y ) f(x,y) f(x,y)趋于同一个值A,则重极限 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) \lim \limits_{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y) (x,y)(x0,y0)limf(x,y)存在且也等于A.
这一性质常常用来证明二元函数 f ( x , y ) f(x,y) f(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)这点的极限不存在,即找到两条趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的路径,使得二元函数 f ( x ) f(x) f(x)在这两条路径上趋于不同的值。然而,在绝大多数的数学分析教科书中,常常只介绍利用相对简单的径向路径来证明一个二元函数在某一点的极限不存在,即当二元函数 f ( x , y ) f(x,y) f(x,y)沿着 y = k x y=kx y=kx这些路径趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)时,若极限与径向的斜率 k k k相关,则二元函数 f ( x , y ) f(x,y) f(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)这点的极限不存在。而这种方法对些相对较为复杂的二元函数 f ( x , y ) f(x,y) f(x,y)通常是失效的例如,考虑二元函数 f ( x , y ) = x 2 y 2 x 3 + y 3 f(x, y)=\frac{x^{2} y^{2}}{x^{3}+y^{3}} f(x,y)=x3+y3x2y2 ( x , y ) (x,y) (x,y)趋于 ( 0 , 0 ) (0,0) (0,0)的极限时,不难发现 ( x , y ) (x,y) (x,y)沿着径向路径 y = k x y=kx y=kx的极限都为0.然而 f ( x , y ) = x 2 y 2 x 3 + y 3 f(x, y)=\frac{x^{2} y^{2}}{x^{3}+y^{3}} f(x,y)=x3+y3x2y2 ( x , y ) (x,y) (x,y)趋于 ( 0 , 0 ) (0,0) (0,0)是不存在极限的,若考虑路径 y = − x + α 2 x 2 y=-x+\frac{\alpha}{2} x^{2} y=x+2αx2,则
lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 y 2 x 3 + y 3 = lim ⁡ y = − x + α 2 x 2 + 2 ( α 2 ) 3 x 3 − α x 2 + x ( α 2 ) 3 x 3 − 3 ( α 2 ) 2 x 2 + 3 α 2 x = 2 3 α \begin{aligned} &\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{3}+y^{3}}=\lim _{y=-x+\frac{\alpha}{2} x^{2}+2} \frac{\left(\frac{\alpha}{2}\right)^{3} x^{3}-\alpha x^{2}+x}{\left(\frac{\alpha}{2}\right)^{3} x^{3}-3\left(\frac{\alpha}{2}\right)^{2} x^{2}+3 \frac{\alpha}{2} x}\\ &=\frac{2}{3 \alpha} \end{aligned} (x,y)(0,0)limx3+y3x2y2=y=x+2αx2+2lim(2α)3x33(2α)2x2+32αx(2α)3x3αx2+x=3α2

下面我们老考虑这些极限是怎样计算出来的

事实上,从解析几何的观点来看, ( x , y ) (x,y) (x,y)沿某一路径趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)可以被理解为 ( x , y ) (x,y) (x,y)在趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的过程中,变量y是一个关于变量x的函数,即 y = y ( x ) y=y(x) y=y(x),而且这个函数还满足 y 0 = y ( x 0 ) y_{0}=y\left(x_{0}\right) y0=y(x0)。因此, ( x , y ) (x,y) (x,y)沿某一路径趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)时, f ( x , y ) f(x,y) f(x,y)的极限可以理解为复合函数 £ f ( x , y ( x ) ) £ f(x, y(x)) £f(x,y(x)) x ⟶ x 0 x \longrightarrow x_{0} xx0时的极限。在这种观点下,我们将利用一元函数的洛必达法则来探索上述这些路径是如何被发现的。

首先考虑 f ( x , y ) = x 3 + y 3 x 2 + y f(x, y)=\frac{x^{3}+y^{3}}{x^{2}+y} f(x,y)=x2+yx3+y3,由于此时我们将 y y y看成是一个 x x x的函数,故当 y = − x 2 + g ( x ) y=-x^{2}+g(x) y=x2+g(x) lim ⁡ x → 0 g ( x ) = 0 \lim \limits_{x \rightarrow 0} g(x)=0 x0limg(x)=0时, lim ⁡ ( x , y ) → ( 0 , 0 ) x 3 + y 3 x 2 + y \lim \limits_{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y} (x,y)(0,0)limx2+yx3+y3是一个关于变量 x x x 0 0 \frac{0}{0} 00极限,我们知道, 0 0 \frac{0}{0} 00不定式的极限与分子和分母两个因子的阶数有关。我们假设 y = − x 2 + g ( x ) y=-x^{2}+g(x) y=x2+g(x),分子分母同时求导可得:
lim ⁡ x → 0 3 x 2 + 3 y 2 y 2 x + y ′ \lim _{x \rightarrow 0} \frac{3 x^{2}+3 y^{2} y}{2 x+y^{\prime}} x0lim2x+y3x2+3y2y
若进一步,还有 lim ⁡ x → 0 g ′ ( x ) = 0 \lim \limits_{x \rightarrow 0} g^{\prime}(x)=0 x0limg(x)=0,再次进行求导,可得
lim ⁡ x → 0 6 x + 6 y y ′ + 3 y 2 y ′ ′ 2 + y ′ ′ \lim _{x \rightarrow 0} \frac{6 x+6 y y^{\prime}+3 y^{2} y^{\prime \prime}}{2+y^{\prime \prime}} x0lim2+y6x+6yy+3y2y
若再一次假设 lim ⁡ x → 0 g ′ ′ ( x ) = 0 \lim \limits_{x \rightarrow 0} g^{\prime \prime}(x)=0 x0limg(x)=0,再次求导得

lim ⁡ x → 0 6 + 6 ( y ) 2 + 12 y y ′ ′ + 3 y 2 y ′ ′ ′ y ′ ′ ′ \lim _{x \rightarrow 0} \frac{6+6(y)^{2}+12 y y^{\prime \prime}+3 y^{2} y^{\prime \prime \prime}}{y^{\prime \prime \prime}} x0limy6+6(y)2+12yy+3y2y
由于 lim ⁡ x → 0 g ( x ) = lim ⁡ x → 0 g ( x ) = lim ⁡ x → 0 g ′ ′ ( x ) = 0 \lim \limits_{x \rightarrow 0} g(x)=\lim \limits_{x \rightarrow 0} g(x)=\lim \limits_{x \rightarrow 0} g^{\prime \prime}(x)=0 x0limg(x)=x0limg(x)=x0limg(x)=0,我们对上式进行积分,可得 y = − x 2 + α 6 x 3 y=-x^{2}+\frac{\alpha}{6} x^{3} y=x2+6αx3

下面几个例题都可以采用上述方法

例题一:求极限 lim ⁡ ( x , y ) → ( 0 , 0 ) x − y x + y \lim \limits_{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y} (x,y)(0,0)limx+yxy
解析:当 ( x , y ) (x,y) (x,y)沿 y = k x y=kx y=kx趋向于 ( 0 , 0 ) (0,0) (0,0)时,有
lim ⁡ x → 0 y → 0 x − y x + y = lim ⁡ x → 0 y = k x x − y x + y = lim ⁡ x → 0 x − k x x + k x = 1 − k 1 + k \lim _{x \rightarrow 0 \atop y \rightarrow 0} \frac{x-y}{x+y}=\lim _{x \rightarrow 0 \atop y=k x} \frac{x-y}{x+y}=\lim _{x \rightarrow 0} \frac{x-k x}{x+k x}=\frac{1-k}{1+k} y0x0limx+yxy=y=kxx0limx+yxy=x0limx+kxxkx=1+k1k
所以极限不存在。

例题二:求极限 lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 y 2 x 2 y 2 + ( x − y ) 2 \lim \limits_{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} (x,y)(0,0)limx2y2+(xy)2x2y2

解析:当 ( x , y ) (x,y) (x,y)沿着 y = x y=x y=x趋向于 ( 0 , 0 ) (0,0) (0,0)时,有
lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 y 2 x 2 y 2 + ( x − y ) 2 = lim ⁡ x → 0 x 2 y 2 x 2 y 2 + ( x − y ) 2 = lim ⁡ x → 2 x 2 x 2 x 2 x 2 + ( x − x ) 2 = 1 \begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} &=\lim _{x \rightarrow 0} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} \\ &=\lim _{x \rightarrow 2} \frac{x^{2} x^{2}}{x^{2} x^{2}+(x-x)^{2}}=1 \end{aligned} (x,y)(0,0)limx2y2+(xy)2x2y2=x0limx2y2+(xy)2x2y2=x2limx2x2+(xx)2x2x2=1
( x , y ) (x,y) (x,y)沿着 y = 0 y=0 y=0趋向于 ( 0 , 0 ) (0,0) (0,0)时,有
lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 y 2 x 2 y 2 + ( x − y ) 2 = lim ⁡ x → 0 x 2 y 2 x 2 y 2 + ( x − y ) 2 = lim ⁡ x → 0 x 2 0 2 x 2 0 2 + ( x − 0 ) 2 = 0 \begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} &=\lim _{x \rightarrow 0} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} \\ &=\lim _{x \rightarrow 0} \frac{x^{2} 0^{2}}{x^{2} 0^{2}+(x-0)^{2}}=0 \end{aligned} (x,y)(0,0)limx2y2+(xy)2x2y2=x0limx2y2+(xy)2x2y2=x0limx202+(x0)2x202=0
因此极限不存在。

例题三:求极限 lim ⁡ ( x , y ) → ( 0 , 0 ) x 3 + y 3 x 2 + y \lim \limits_{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y} (x,y)(0,0)limx2+yx3+y3

解析:当 ( x , y ) (x,y) (x,y)沿着 y = k x 3 − x 2 y=k x^{3}-x^{2} y=kx3x2趋向于 ( 0 , 0 ) (0,0) (0,0)时,有
lim ⁡ ( x , y ) → ( 0 , 0 ) x 3 + y 3 x 2 + y = lim ⁡ x → 0 x 3 + y 3 x 2 + y = lim ⁡ x = k x 3 − x 2 x 3 + ( k x 3 − x 2 ) 3 x 2 + k x 3 − x 2 = 1 k \begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y} &=\lim _{x \rightarrow 0} \frac{x^{3}+y^{3}}{x^{2}+y} \\ &=\lim _{x=k x^{3}-x^{2}} \frac{x^{3}+\left(k x^{3}-x^{2}\right)^{3}}{x^{2}+k x^{3}-x^{2}} \\ &=\frac{1}{k} \end{aligned} (x,y)(0,0)limx2+yx3+y3=x0limx2+yx3+y3=x=kx3x2limx2+kx3x2x3+(kx3x2)3=k1
显然其随着k值得变化而变化,所以不是极值。

例题四:求极限 lim ⁡ ( x , y ) → ( 0 , 0 ) x ln ⁡ ( 1 + x y ) x + y \lim \limits_{(x, y) \rightarrow(0,0)} x \frac{\ln (1+x y)}{x+y} (x,y)(0,0)limxx+yln(1+xy)
解析:当 ( x , y ) (x,y) (x,y)沿着 y = x α − x y=x^{\alpha}-x y=xαx趋向于 ( 0 , 0 ) (0,0) (0,0)时,
lim ⁡ ( x , y ) → ( 0 , 0 ) x ln ⁡ ( 1 + x y ) x + y = lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 y x + y = lim ⁡ x → 0 y = x α − x x 2 y x + y = lim ⁡ x → 0 x α + 2 − x 3 x α = lim ⁡ x → 0 ( x 2 − x 3 − α ) = { − 1 , α = 3 0 , α < 3 0 , α > 3 \begin{aligned} \lim _{(x, y) \rightarrow(0,0)} x \frac{\ln (1+x y)}{x+y} &=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x+y} \\ &=\lim _{x \rightarrow 0 \atop y=x^{\alpha}-x} \frac{x^{2} y}{x+y}=\lim _{x \rightarrow 0} \frac{x^{\alpha+2}-x^{3}}{x^{\alpha}} \\ &=\lim _{x \rightarrow 0}\left(x^{2}-x^{3-\alpha}\right)=\left\{\begin{array}{ll} -1, & \alpha=3 \\ 0, & \alpha<3 \\ 0, & \alpha>3 \end{array}\right. \end{aligned} (x,y)(0,0)limxx+yln(1+xy)=(x,y)(0,0)limx+yx2y=y=xαxx0limx+yx2y=x0limxαxα+2x3=x0lim(x2x3α)=1,0,0,α=3α<3α>3
故极限不存在。

例题五:求极限 lim ⁡ ( x , y ) → ( 0 , 0 ) x y x + y \lim \limits_{(x, y) \rightarrow(0,0)} \frac{x y}{x+y} (x,y)(0,0)limx+yxy

解析:当 ( x , y ) (x,y) (x,y)沿着 y = x 2 − x y=x^{2}-x y=x2x趋向于 ( 0 , 0 ) (0,0) (0,0)时,有
lim ⁡ ( x , y ) → ( 0 , 0 ) x y x + y = lim ⁡ x → 0 y = x 2 − x x y x + y = lim ⁡ x → 0 x ( x 2 − x ) x + x 2 − x = lim ⁡ x → 0 ( x − 1 ) = − 1 \begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x+y} &=\lim _{x \rightarrow 0 \atop y=x^{2}-x} \frac{x y}{x+y} \\ &=\lim _{x \rightarrow 0} \frac{x\left(x^{2}-x\right)}{x+x^{2}-x} \\ &=\lim _{x \rightarrow 0}(x-1)=-1 \end{aligned} (x,y)(0,0)limx+yxy=y=x2xx0limx+yxy=x0limx+x2xx(x2x)=x0lim(x1)=1
( x , y ) (x,y) (x,y)沿着 y = x y=x y=x趋向于 ( 0 , 0 ) (0,0) (0,0)时,有
lim ⁡ ( x , y ) → ( 0 , 0 ) x y x + y = lim ⁡ x → 0 y = x x y x + y = lim ⁡ x → 0 x 2 2 x = 0 \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x+y}=\lim _{x \rightarrow 0 \atop y=x} \frac{x y}{x+y}=\lim _{x \rightarrow 0} \frac{x^{2}}{2 x}=0 (x,y)(0,0)limx+yxy=y=xx0limx+yxy=x0lim2xx2=0
故极限不存在。

例题六:求证 lim ⁡ ( x , y ) → ( 0 , 0 ) x y \lim \limits_{(x, y) \rightarrow(0,0)} x^y (x,y)(0,0)limxy不存在
证明:当 ( x , y ) (x,y) (x,y)沿着 y = k ln ⁡ x y=\frac{k}{\ln x} y=lnxk趋向于 ( 0 , 0 ) (0,0) (0,0)时,有
lim ⁡ ( x , y ) → ( 0 , 0 ) x y = e k \lim _{(x, y) \rightarrow(0,0)} x^y=e^k (x,y)(0,0)limxy=ek
所以极限不存在

例题七:求证 lim ⁡ ( x , y ) → ( 1 , 1 3 ) tan ⁡ 3 π y 12 y − 4 − arctan ⁡ x 1 − x 4 \lim \limits_{(x, y) \rightarrow\left(1, \frac{1}{3}\right)} \frac{\frac{\tan 3 \pi y}{12 y-4}-\arctan x}{1-x^{4}} (x,y)(1,31)lim1x412y4tan3πyarctanx不存在
证明:
因为
tan ⁡ 3 π y 12 y − 4 = π 4 + π 3 12 ( 3 y − 1 ) 2 + O ( ( 3 y − 1 ) 4 ) \frac{\tan 3 \pi y}{12 y-4}=\frac{\pi}{4}+\frac{\pi^{3}}{12}(3 y-1)^{2}+O\left((3 y-1)^{4}\right) 12y4tan3πy=4π+12π3(3y1)2+O((3y1)4)
x = 3 y x=3y x=3y,则
tan ⁡ 3 π y 12 y − 4 − arctan ⁡ x = 1 − x 2 + o ( 1 − x ) lim ⁡ ( x , y ) → ( 1 , 1 3 ) tan ⁡ 3 π y 12 y − 4 − arctan ⁡ x 1 − x 4 = lim ⁡ x → 1 1 − x 2 + o ( 1 − x ) 1 − x 4 = 1 8 \begin{array}{l} \frac{\tan 3 \pi y}{12 y-4}-\arctan x=\frac{1-x}{2}+o(1-x) \\ \lim _{(x, y) \rightarrow\left(1, \frac{1}{3}\right)} \frac{\frac{\tan 3 \pi y}{12 y-4}-\arctan x}{1-x^{4}}=\lim _{x \rightarrow 1} \frac{\frac{1-x}{2}+o(1-x)}{1-x^{4}}=\frac{1}{8} \end{array} 12y4tan3πyarctanx=21x+o(1x)lim(x,y)(1,31)1x412y4tan3πyarctanx=limx11x421x+o(1x)=81
3 y − 1 = 1 − x 3 3 y-1=\sqrt[3]{1-x} 3y1=31x
则有
KaTeX parse error: Expected group after '_' at position 239: …{1-x^{4}}=\lim _̲\limits{x \righ…
故极限不存在。

  • 29
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值