如何确定经过层层扒皮(求导)之后,一个函数的是否丧失可导性?

98 篇文章 7 订阅
3 篇文章 1 订阅

"求导是怎么回事呢?就像你观察一个原子内部,发现里面还藏着一个宇宙一样,再一个曲线空间的点上,开头一个新的曲线空间,求高阶导数呢,就是一层层嵌套的曲线空间,直至开拓出一个常数空间,或者一个不可开拓空间,才不能继续向下开拓".

这是从头条里面摘抄的一段话,这种说法可能有很严重的问题,甚至是错误,但是能给人一种启迪,一些思考,所以我就摘抄下来。闻一善言,假以覆短吧。

从某种程度上,复合函数和可导的开拓过程有些相似,我们知道,复合函数是类似于 

y=f(u)\ \ u=g(x)

这样的函数,但是仅仅到此为止了吗?x会不会是某个过程的函数呢?现实生活中存在很多这样的复合过程,比如学习能力就是一个复合函数,学习能力首先是学历,执行力,专注度的函数,同时学历,执行力和专注度也是随着时间变化的,它可以看成随时间变化的函数,那么到底时间会不会是某个东西的函数呢?可能几千年来我们都认为时间是永恒的,按照固定的速度流逝,可是自从爱因斯坦发明了相对论,我们知道了,时间变化和速度有关,时间是速度的一个函数,那究竟还能不能继续向下开拓呢? 我不知道,但是可能性是有的不是么?

越是高阶可导函数曲线越是光滑,可导都光滑,这是对可导的感性认知,有些函数,无论你对它求导多少次,它永远都是可导的,比如

f(x)=e^x

它的函数图象是:

还有些函数,它不是无穷次可导的,而是经过有限次求导之后,变为了常数,比如幂函数

f(x)=x^5

经过有限次球导函数之后,函数变成了直线,再求导的话就变成了0。

还有另外一些函数,经过经过有限次球导函数之后,变成了带有尖峰或者间断点的函数,这个时候就不简单了,它变成了不可导函数,比如下面这个:

经过多次求导之后,变成了绝对值函数 

f(x)=abs(x)

它在原点处存在尖峰,是不可导函数。

那么,究竟最后这种,有限次求导之后便不能再求导的函数,图形上有什么特征呢? 现在我回答不了这个问题,立贴在这里,或许某天我会想明白的吧。


结束!

  • 8
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值