Deep Learning读书笔记(一):Reducing the Dimensionality of Data with Neural Networks

本文是关于《Deep Learning》的读书笔记,主要探讨了如何利用深度学习网络进行数据降维,特别是通过预训练逐层优化网络权重,以达到更好的特征提取效果。文章介绍了使用限制玻尔兹曼机的对比分歧算法进行预训练,然后通过解码器还原高维数据,展示了在数据压缩和分类任务中的潜力。
摘要由CSDN通过智能技术生成

       这是发表在Science上的一篇文章,是Deep Learning的开山之作,同样也是我读的第一篇文章,我的第一篇读书笔记也从这开始吧。

       文章的主要工作是数据的降维,等于说这里使用深度学习网络主要提取数据中的特征,但却并没有将这个特征应用到分类等任务中去。文章中模型的功能与自动编码器的功能十分相似,我认为可以将文章中的模型认为是一个深度自编码器模型。网络模型如下图所示:

       在描述这张图之前首先要提到网络的预训练,这也是文章中重点说明的一点。如果我们想要得到一个更好的解,那么就得在整个网络初始化时赋予一个较优的权值。因为网络的层数较多,整个模型的参数空间很大,如果使用一个随机的初始值,其靠近局部最优值得可能性就很小,在参数优化是算法的收敛速度也很慢。但如果为其赋予一个较优的初始值,使其更为接近一某一个局部最优值点,那么参数优化时算法就能够较快的收敛,也能够取得更优的解。较为出名的算法有对比分歧算法,之后也会提到。<

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值