这是发表在Science上的一篇文章,是Deep Learning的开山之作,同样也是我读的第一篇文章,我的第一篇读书笔记也从这开始吧。
文章的主要工作是数据的降维,等于说这里使用深度学习网络主要提取数据中的特征,但却并没有将这个特征应用到分类等任务中去。文章中模型的功能与自动编码器的功能十分相似,我认为可以将文章中的模型认为是一个深度自编码器模型。网络模型如下图所示:
在描述这张图之前首先要提到网络的预训练,这也是文章中重点说明的一点。如果我们想要得到一个更好的解,那么就得在整个网络初始化时赋予一个较优的权值。因为网络的层数较多,整个模型的参数空间很大,如果使用一个随机的初始值,其靠近局部最优值得可能性就很小,在参数优化是算法的收敛速度也很慢。但如果为其赋予一个较优的初始值,使其更为接近一某一个局部最优值点,那么参数优化时算法就能够较快的收敛,也能够取得更优的解。较为出名的算法有对比分歧算法,之后也会提到。<