2006年,加拿大多伦多大学教授、机器学习领域的泰斗Geoffrey Hinton发表的这篇文章引起了深度学习的狂潮,使得深度学习死灰复燃。
1、在数据降维中,可以利用多层神经网络。梯度下降法是传统的参数训练方法,但是当初始条件接近于最优解时,梯度下降方法得到的参数较为合理。本文中描述了一种更有效的初始化的方法(逐层初始化,layer-wise pre-training)。
上面这段话来自论文的摘要,Deep learing分两步,第一步是初始化,第二步是调优,摘要中主要体现了第一步,这也是深度学习最关键的部分。
2、常用的降维方法是PCA,Deep learning采用多层神经网络,提供了一种非线性的数据降维方法。
3、多层网络的最优化是困难的,当采用较大的初始参数时,网络容易陷入局部最优,当采用较小的初始参数时,梯度的下降很慢,训练需要很长时间。因此,最好的初始值是接近于最优解的,但是这样的初始值是很难得到的。作者采用了一个’pretraining’过程,得到初始值。
4、Deep Learning的Pretraining过程是逐层初始化的,采用两层的RBM(Restricted Boltzmann machine),关于RBM,待补充。
5、通过layer-wise pre-training的训练,得到网络的初始值。接下来需要对整个模型进行调优,通过fine-tuning the weights for optimal reconstruction.
深度学习方面有关资料:
zouxy09的CSDN博文-深度学习笔记,讲的