Reducing the Dimensionality of Data with Neural Networks

本文探讨了深度学习如何通过多层神经网络实现数据降维,重点介绍了逐层初始化(layer-wise pre-training)方法,以解决优化难题。深度学习先通过预训练获取接近最优解的初始参数,再进行整体模型的调优。与传统神经网络相比,深度学习的优势在于其多层结构和特征学习能力,能更好地处理梯度扩散问题。
摘要由CSDN通过智能技术生成

2006年,加拿大多伦多大学教授、机器学习领域的泰斗Geoffrey Hinton发表的这篇文章引起了深度学习的狂潮,使得深度学习死灰复燃。

1、在数据降维中,可以利用多层神经网络。梯度下降法是传统的参数训练方法,但是当初始条件接近于最优解时,梯度下降方法得到的参数较为合理。本文中描述了一种更有效的初始化的方法(逐层初始化,layer-wise pre-training)。
上面这段话来自论文的摘要,Deep learing分两步,第一步是初始化,第二步是调优,摘要中主要体现了第一步,这也是深度学习最关键的部分。
2、常用的降维方法是PCA,Deep learning采用多层神经网络,提供了一种非线性的数据降维方法。
3、多层网络的最优化是困难的,当采用较大的初始参数时,网络容易陷入局部最优,当采用较小的初始参数时,梯度的下降很慢,训练需要很长时间。因此,最好的初始值是接近于最优解的,但是这样的初始值是很难得到的。作者采用了一个’pretraining’过程,得到初始值。
4、Deep Learning的Pretraining过程是逐层初始化的,采用两层的RBM(Restricted Boltzmann machine),关于RBM,待补充。
5、通过layer-wise pre-training的训练,得到网络的初始值。接下来需要对整个模型进行调优,通过fine-tuning the weights for optimal reconstruction.

深度学习方面有关资料:
zouxy09的CSDN博文-深度学习笔记,讲的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值