到底什么是“数学思维”?超越宇宙尺度的人类思维之美!

本文介绍了数学思维的重要性,通过吴军老师的观点和《思考的乐趣》一书中关于数学证明的内容,特别是范德瓦尔登定理,展示了如何通过染色问题理解数学的逻辑。文章还提及了几本关于数学的书籍,鼓励读者探索数学之美和思维的深度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2a1f133b5af3fcf159b7544568fb5349.jpeg

新年新气象,知识不打烊!

全场电子书惊喜6折,开启智慧成长年!

翻开新篇章,让心灵与知识一同远航。

错过等一年,现在就是囤书的最好时光!

(PS:新上电子书不参与本次活动哦,小编多帮大家争取了半天时间,8号中午12点优惠就开始了,不要被老板发现)

吴军老师说,数学思维,不仅能让你登上更高的高度,开拓你的眼界,也能够帮你建立一些正确的常识,让你少走弯路,并且让你在人生的每一个岔路口,有更多更多的选择。

那么到底什么是数学思维呢?

数学科普大神顾森的这本《思考的乐趣》就从“生活中的数学”、“数学之美”、“几何的大厦”、“精妙的证明”和“思维的尺度”五个维度,用了大量的案例来展现数学的乐趣,每一个读过的人都会被深深吸引。

《思考的乐趣》出版至今,收到了十余万的读者的喜爱。今天就选取其中“史诗般壮观的数学证明”一节,为大家分享数学思维的尺度。

你认为,是否有可能把全体正整数染成红蓝二色,使得不存在无穷长的等差数列,满足数列中的所有数都是一种颜色?

事实上,满足题意的染色方案是存在的。例如,我们可以从数字1开始,把正整数染成一段红一段蓝,使得每一段的长度都是其前一段的两倍。也就是说,我们把1染成红色,2和3染成蓝色,4到7染成红色,8到15染成蓝色,依此类推,单色区间的长度成倍地增加。可以证明,如此染色后,一定不存在无穷长的单色等差数列。这是因为,假设某个等差数列的公差为a8f0e592027d26a38a4c9c43b5b82ed6.png,那么当单色区间的长度大于公差67e2e86ab03ef895387eec436ff9a7ac.png时,等差数列将会一截一截地落在不同的染色区间中,从而拥有不同的颜色。

有趣的是,把上述命题中的“无穷长”换成“任意长”,命题就不见得仍然正确了。1927年,荷兰数学家范•德•瓦尔登(Van der Waerden)证明了这么一个事实:对于任意大的正整数c0ac717cdc0a1353352bd838927c128f.png,总存在正整数1bca92ddc5c5ee21789b024d81b2b7a4.png,使得对从1到ee81bfb1d54c4ea2affea546b12764dc.png的正整数进行红蓝二染色后,不管你是怎么染色的,里面总存在一个单色的长度为86bf6f215ae1049a97781012b7b19934.png的等差数列。当命题从两种颜色扩展到任意多种颜色时,该命题竟然也都成立。这个定理就叫做范德瓦尔登定理。下面,让我们来看看范德瓦尔登定理的证明过程。到了整个证明的最后一步,你一定会被震撼得说不出话来。

我们首先来证明2282844a6308deea75036fd5d76b29d7.png的情况:存在某个29e255b5f43096a02294e666de663870.png使得对ae4f26ea64cc95f444d8d1ba6f5b5df6.png个连续自然数进行二染色后,里面总存在长为3的单色等差数列。我们把全体正整数5个5个地分组,1到5为第一组,6到10为第二组,以此类推。每一组里总共有7356831889c2fd99b0c8d9150384ade9.png种不同的染色方案,因此在前1fc48d064e332d2ebc65b9574dcc7a8e.png组里面必然有两个组的染色一模一样,比方说第7组和第23组吧。把第7组里的数分别记作e94f3fe47151ea8f5bea385e849a9f73.png,由鸽笼原理,a49d4dd370e82c4dfe546eafbd3f973e.png5c2f70bbc11089c639418a235b29dd55.pnga4964c20964f3214b9308c3f8e824848.png里面一定存在两个颜色相同的数,不妨假设3edf8febcc738532a2e0c806b31e9e1e.png41a79a7b14e8f98dfdc5466253983eff.png都是红色吧。考虑542acb7fd263a580c614ce761712b896.png的颜色:如果它是红色,我们的问题就解决了,d5ee1f5f45c1005fad7ecfef3092e3f2.png已经是一个长度为3的等差数列。

下面考虑699c74e539cd60738d90667297aa80d3.png是蓝色的情况。别忘了第7组和第23组的染色完全相同,因此如果把第23组里的数分别记作d22ebfd8547a177546bd5ee2beeae4a7.png,那么15547641e1c8525dcd39e6e027db98a8.png1c1ec0511cacc9643e6ac9adce38c7f5.png也是红色,5c83f3122ef34365849c76c536c06f92.png也是蓝色。下面我们来考虑全体正整数的第39组(注意到4576edbe9a86f476d64abf51d5ff3107.png是等差数列),我们把它里面的5个数分别记作16545271b2be39824aca57fa7cfc041d.png。考虑6af80cce93b754f49c39b7746745f8fd.png的颜色:如果它是红色,那4b5b892ac431abba53f15c6b6d229acb.png就是一个全为红色的等差数列,否则64f8d74ad8029fcf3971fe4d29ede4fa.png就是一个全为蓝色的等差数列。显然,上述证明中的“最坏情况”就是,第1组和第33组的染色相同,且第1组的第1个数和第33组的第3个数是红色的,则下一个数最远可以是第65组的第5个数,即全体正整数的第325个数。换句话说,f1f0caf5ff2ef9324e6be191d175b585.pngcb67cb2ea7ff8ccb18607a225654089c.png即满足条件。(这不一定是最小的6b87311d68b6fd1e633c5fb0f7628a92.png,但确实是一个满足要求的b1589fa52fcc76b7cd44c50fbb4f65ee.png。)

有意思的是,对任意的颜色数33b18d1db6238bc8bfac57661c671111.png,上述证明都是适用的。比方说,当16bfadbff9accdbd8771a995383faa1f.png时,取671a4ce80b3990eebc8cfcef6f379a69.png,把全体正整数3d224fb2974477d1bc396a703e898d5e.png4c8d99c7f5dd8513c8dfe49bfd489339.png个分为大组,在头1b673363cdfcfe38c7f2d875df680828.png组中必然存在两个染色一样的组,不妨把它们记作大组A和大组B。把这两个大组里的数分别都7个7个地分成c8858e86a427345de223a2f70bd6c59d.png个小组,在头3753d441bffc63d61c473b26b1f4ceeb.png组中,必然有两个小组的染色方案一模一样,比如小组a和小组b。

在每一个小组的前4个数中,必然有2个数的颜色是相同的,假设第1个数和第4个数是红色。那这个小组里面的第7个数要么是红色(问题已解决),要么是另一种颜色(比如蓝色)。将与前两个小组构成等差序列的第三个小组记作小组c,由于一个大组中有4658497acf272439b2a21c3e03bcb359.png个小组,因此小组c一定还在该大组中。小组c中的第7个数要么是红色(问题已解决),要么是蓝色(问题已解决),要么是剩下的那种颜色(比如黄色)。那么,与两个大组构成等差序列的第三个大组(记作大组C)中,对于相应的小组c位置上的第7个数(图1中标记星号的位置)的颜色就没有任何选择了,它或者和每个大组的那个染黄色的数成等差数列,或者和大组A中的小组a的蓝色数、大组B中的小组b的蓝色数构成等差数列,或者是跨越层数最多的,和大组A中的小组a的第1个红色数、大组B中的小组b的第2个红色数构成等差数列。

1ab488fce38c2f0305e4870629b090c1.png

图 1

类似地,对于更大的颜色数e4f6f8d6d71baab4cfbca771a0177a8d.png,我们都可以归纳证明,只不过分组的层数更多,底数也相应变大。因此,我们解决了6d08584a59a781f751466b6d3f0c5f11.png0734578acfa2e4e42e0b80ed885d08d8.png任意大时的情形。

真正令人震撼的时刻到了。接下来,我们将对afb14ca53a4e086be453dcd29ac9b9e7.png施加归纳。下面尝试证明d5bb716683a6f614d150899943b8ea87.png8dcc421c7fdc8416cbe38c685be66728.png的情况,即存在一个充分大的e89f2b351675f89f3c4fa9e7adc73dd9.png,使得对1到6f87d770c9501f59cee8bf409ae31088.png的正整数进行二染色后,里面总存在长度为4的单色等差数列。由于当eb105bdf6e9a55e7013d8d6948ac59f4.png时每325个数里面必然有一个等差数列,因此我们按每487个数一组进行分组。这样可以保证每一组里面的前325个数中总存在长为3的单色等差数列,并且该数列的第4个数也在该组内。注意,一个487元组共有d84fa70328637c584ac7fd2de6c799b8.png种染色方案,如果我们把它们看做084ad908341c54661af6f7f195e2c2e8.png种不同的“广义颜色”,由ad056a397cbee72e97e69877b6a1f469.png16e73813a547a2646fbea5d97b19a844.png的情况知,必然存在3个组,这3个组的位置形成等差数列,并且它们的染色方案完全相同。考虑每一组中前325个数所形成的长为3的等差数列,并考虑该数列中第4个数的颜色:如果颜色相同,问题解决;否则便考察顺推下去的第4个组的相应位置上的数的颜色,它将别无选择。

类似地,我们可以归纳出任意大的2aed6a6d92d36e6b636ee2609c847890.png和任意大的9a4c4d3a5fc6ff68bc3d400faaa32ed6.png的情形。可想而知,也可以说难以想象,用这种做法得出的289835a83b04373a2f91a53befe8a5bb.png是何等地巨大,它将很快超出整个宇宙中任何具有实际意义的数字,其大小已经不能用通常的方式来记录了。这个证明的气势太宏大了,以至于当初很多人都没想到。当我第一次读到a9563b6688ba7cb7c3bf41fd95e9cc41.png种颜色时,视野一瞬间广大得难以描述;并且当我向着bbcd2f4384fcf60842cc65384472905b.png更大的方向看去时,不禁对思维的尺度表示深深的膜拜。

  推荐阅读

99886a0c86cb6061d8727e73f09be0c1.jpeg

《思考的乐趣:Matrix67数学笔记》

作者:顾森

中科院院士张景中、汤涛联袂推荐

本书是一个疯狂数学爱好者的数学笔记,面向所有喜爱数学的读者。本书包括5部分内容,即生活中的数学、数学之美、几何的大厦、精妙的证明、思维的尺度,涉及48篇精彩的文章。即使你不喜欢数学,也会为本书的精彩所倾倒。

这是一本标新立异的趣味数学书。每一个读过的人都会被深深吸引。这是一个热爱思考的年轻人积攒的让人一读就欲罢不能的趣味书。

2329b0012443200e6abe2a058bb3c9d8.jpeg

新年新气象,知识不打烊!

全场电子书惊喜6折,开启智慧成长年!

翻开新篇章,让心灵与知识一同远航。

错过等一年,现在就是囤书的最好时光!

(PS:新上电子书不参与本次活动哦,小编多帮大家争取了半天时间,8号中午12点优惠就开始了,不要被老板发现)

232f35852fd9d4f4410b89ba750dda92.jpeg

《数学的雨伞下:理解世界的乐趣》

作者:[法] 米卡埃尔•洛奈(Mickaël Launay)

译者:欧瑜

惊讶!是思考的起点;

数学,是理解世界本质与万物关联的工具!

以数学为起点,以思考为快乐!

法国数学学会“达朗贝尔奖”得主科普名作。

数学,是理解世界本质与万物关联的工具,它能制造两个指南针:一个叫“实用”,一个叫“优雅”。不懂得数学的意义,就无法真正学习和理解数学。

科学家为什么那么聪明?因为他们有非凡的思考方法。

以数学为工具,以思考为快乐;培养自己的思考力、观察力,成为真正的思考者。

01

9d2e2bb89e87e8200886295d9bb8167f.png

《数学女孩》(1-6)

作者:结城浩

译者:朱一飞等

日本数学会强力推荐,内容由浅入深,绝赞的数学科普书,在动人的故事中走近数学,在青春的浪漫中理解数学。

《数学女孩》系列以小说的形式展开,从基础数学到费马大定理、哥德尔不完备定理、随机算法、伽罗瓦理论、庞加莱猜想,重点描述一群年轻人探寻数学之美的过程。

02

5016c696981e628d9724401826324fe4.png

《数学女孩的秘密笔记》系列(全7册)

作者:[日]结城浩  

译者:陈朕疆/卫宫纮 

全网已上市!持续热销中!

日本数学会强力推荐,热销超50万册。《数学女孩》全新延展系列。

初等数学科普×青春小说,数学再也不枯燥,在动人的故事中走近数学,在青春的浪漫中理解数学。

“数学女孩”系列以小说的形式展开,重点讲述一群年轻人探寻数学之美的故事,内容深入浅出,讲解十分精妙,被称为“绝赞的数学科普书”。“数学女孩的秘密笔记”是“数学女孩”的延伸系列。作者结城浩收集了互联网上读者针对“数学女孩”系列提出的问题,整理成篇,以人物对话和练习题的形式,生动巧妙地解说各种数学概念。

03

bd1fe90572806d68e047255ca4593b2d.png

《数学万花筒》(1-3)

作者:伊恩·斯图尔特

译者:张云、何生

青少年、初中培养数学思维学习兴趣,古今数学思想趣味故事怎样解题,用数学思维新方法探究数学之美。

课堂上学不到的数学,不会让人害怕的数学,有趣的数学游戏、谜题、故事和八卦的大杂烩,可从几乎任意一处着手阅读。

04

73f90a80fd8ff72bc83dd49450e5d76b.jpeg

《改变世界的17个方程》

作者:[英] 伊恩•斯图尔特

译者:劳佳

•英国数学科普名家伊恩•斯图尔特经典名作,译为多国语言 

•李永乐推荐科普名作,“欧拉图书奖”获奖作品 

•美国数学学会(AMS)&美国数学协会(MMA)联袂推荐

了解世界运转的深层道理,看懂科学发展的规律 

方程是一首首数学的诗,言简意赅,却充满意义。阐释自然与社会现象,连接数学与物理现实,是方程的力量与美之所在。

05

f511d0ad2da53f58bb9652e834769e4d.png

《写给孩子的数学之美》

作者:昍爸、昍妈

数学之美是什么?数学之美在哪里?学会欣赏数学的美,才能真正理解数学

展现数学均衡有序的思维之美、简洁精确的逻辑之美、度量万物的直观之美、探索奥秘的创造之美

这是一本培养数学思维、数感、图感、直觉的好书,激发数学学习的感知力、观察力、思考力、创造力和自驱力

06

146e53dd70ba830230e75012bdc70473.png

《用数学的语言看世界(增订版)》

作者:[日] 大栗博司

译者:尤斌斌

美国加州理工学院理论物理研究所所长,日本东京大学Kavli数学物理学联合宇宙研究机构研究主任 大栗博司 教授

突破传统数学教育教学顺序、方式 / 以“语言思维”讲解数学核心概念、原理 / 回归“基本原理”重新认识数学本质

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值