AI 时代,一切皆有可能,当写代码的不再只是人类,写小说的也不止是作家——我们真的站在了 AI 时代的路口。
那么,作为普通人,或者是技术浪潮中的开发者,我们该从哪一步开始理解这个世界?
今天是世界读书日,小图为大家挑选了一组真正适合所有人从零开始、逐步深入了解 AI、运用 AI 的书单,这些书即将刷新你的认知,帮你搭建起走向未来的第一套知识体系。
人工智能初了解
《人工智能简史(第2版)》
尼克 | 著
本书获得第七届中华优秀出版物图书奖、第八届吴文俊人工智能科技进步奖,入围央视“2017年度中国好书”,获选第十三届“文津图书奖”推荐图书。
全方位解读人工智能的来龙去脉,几乎覆盖人工智能学科的所有领域,包括人工智能的起源、自动定理证明、专家系统、神经网络、自然语言处理、遗传算法、深度学习、强化学习、超级智能、哲学问题和未来趋势等,以宏阔的视野和生动的语言,对人工智能进行了全面回顾和深度点评。
拓展认知边界
《黑客与画家(10万册纪念版)》
[美]保罗·格雷厄姆(Paul Graham)| 著
阮一峰 | 译
有效的思考方式,才是你最强大的武器,透过黑客与画家的视角,与聪明的头脑对话,了解为何聪明人和我们想得不一样
硅谷创业教父保罗·格雷厄姆畅销近20年的思想经典,豆瓣图书 TOP 250,超过 4 万人想读
奇绩创坛创始人兼 CEO 陆奇作序推荐,王小川、吴声、罗振宇、姬十三、蒋涛、采铜、成甲、阳志平、林恒毅、冯大辉、池建强、方军、李卓桓、高庆一联合推荐
搭好技术底座
《Python编程:从入门到实践(第3版) 》
[美]埃里克·马瑟斯 | 著
袁国忠 | 译
Python 入门圣经,Python 圈最有影响力的图书,影响全球超过 250 万读者,长居 Amazon、京东等网店编程类图书榜首,真正零基础,附赠随书代码+配套视频讲解+速查手册,自学无压力。
全书分两部分:第一部分介绍用 Python 编程所必须了解的基本概念,包括强大的 Python 库和工具,以及列表、字典、if 语句、类、文件与异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的 2D 游戏、利用数据生成交互式的信息图以及创建和定制简单的Web应用,并帮助读者解决常见编程问题和困惑。
理解Al的算法逻辑
《算法图解(第2版)》
[美] 阿迪蒂亚 · Y. 巴尔加瓦 | 著
袁国忠 | 译
最简单易懂的算法教程,像读小说一样轻松。本书长居 Amazon 算法类畅销榜前列,400 多个示意图,基于 Python 代码示例,详细介绍算法执行过程,展示不同算法在性能方面的优缺点。这本绝对是新手入门算法的必备图书。第 2 版,代码更新到了 Python 3,并新增了两章专门讨论树,加之诸多修订,使得内容更加完善。
数学不是难关
《程序员的数学》(系列全四册)
深入浅出,内容涵盖程序员编程中需要掌握的数学知识,这本书从数学基础讲起,再到概率统计,线性代数等热门内容,帮助你掌握编程所需的基础数学知识和数学思维。内容包括机器学习、数据挖掘、模式识别等,作为大模型入门数学知识补充教程,这套书真是太实用了。
《程序员数学:用Python学透线性代数和微积分》
保罗·奥兰德|著
百度KFive|译
数学拥有无穷的力量。它既帮助游戏开发工程师建模物理世界,也帮助量化金融分析师赚取利润,还帮助音频处理工程师制作音乐。在数据科学和机器学习领域,数学知识更是不可或缺的。
本书以图文结合的方式帮助你用 Python 代码解决程序设计中的数学问题。通过边学边练,你会发现线性代数和微积分的重要概念跃然纸上、印在脑中。
《深度学习的数学》
[日]涌井良幸、涌井贞美|著
杨瑞龙|译
一本书掌握深度学习的数学基础知识!结合 235 幅插图和大量示例,基于 Excel 实践,直击神经网络根本原理。
《普林斯顿微积分读本(修订版)》
【美】阿德里安·班纳|著
杨爽,赵晓婷,高璞|译
豆瓣评分 9.6,入门微积分最好的一本书。内容阐述了曼哈顿微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解题的能力。
机器/深度学习基础
《Python机器学习基础教程》
Andreas C. Müller Sarah Guido | 著
张亮(hysic)| 译
scikit-learn 库维护者和核心贡献者作品。内容包括:机器学习的基本概念及其应用;实践中最常用的机器学习算法以及这些算法的优缺点;在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面;模型评估和调参的高级方法,重点讲解交叉验证和网格搜索;管道的概念;如何将前面各章的方法应用到文本数据上,还介绍了一些文本特有的处理方法。
《深度学习入门:基于Python的理论与实现》
斋藤康毅 | 著
陆宇杰 | 译
深度学习“鱼书”,畅销 10 万册,相比 AI 圣经“花书”,本书更合适入门。本书深入浅出地剖析了深度学习的原理和相关技术,书中使用 Python 3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。
《深入浅出神经网络与深度学习》
迈克尔·尼尔森 | 著
朱小虎 | 译
知名计算机科学家 Michael Nielsen 作品,哈工大研究生课程参考书,李航、马少平等多位业内专家推荐。深入讲解神经网络和深度学习技术,侧重于阐释深度学习的核心概念。作者以技术原理为导向,辅以贯穿全书的 MNIST 手写数字识别项目示例,介绍神经网络架构、反向传播算法、过拟合解决方案、卷积神经网络等内容,以及如何利用这些知识改进深度学习项目。学完本书,读者将能够通过编写 Python 代码来解决复杂的模式识别问题。
《深度学习入门4:强化学习》
斋藤康毅 | 著
郑明智 | 译
豆瓣评分 9.8,深受读者喜爱的“鱼书”系列第四弹,深度学习入门经典,从零开始掌握强化学习。沿袭“鱼书”系列风格,提供实际代码,边实践边学习,无须依赖外部库,从零开始实现支撑强化学习的基础技术。
《深度强化学习》
王树森 黎彧君 张志华 | 著
系列视频课全网播放量 100 万+,涵盖最近 10 年最重要的深度强化学习方法,围绕实用、精简两大原则,专注核心知识,成书篇幅仅 312 页,超轻松入门 DRL!全彩印刷,原创 140 多幅精美全彩插图,上市一周登上京东新书销量排行榜第一,口碑、内容兼具。
大模型从零到应用
《BERT基础教程》
苏达哈尔桑·拉维昌迪兰|著
周参|译
详细讲解十余种 BERT 变体的原理,本书聚焦谷歌公司开发的 BERT 自然语言处理模型,由浅入深地介绍了 BERT 的工作原理、BERT 的各种变体及其应用,书中用简单的文字清晰阐释 BERT 背后的复杂原理,让你轻松上手 NLP 领域的里程碑式模型。
《大模型技术30讲》
塞巴斯蒂安·拉施卡|著
叶文滔 | 译
GitHub 项目 LLMs-from-scratch(star数43k)作者、大模型独角兽公司 Lightning AI 工程师倾力打造,全书采用独特的一问一答式风格,探讨了当今机器学习和人工智能领域中最重要的 30 个问题,旨在帮助读者了解最新的技术进展。
内容共分为五个部分:神经网络与深度学习、计算机视觉、自然语言处理、生产与部署、预测性能与模型评测。每一章都围绕一个问题展开,不仅针对问题做出了相应的解释,并配有若干图表,还给出了练习供读者检验自身是否已理解所学内容。
《从零构建大模型》
塞巴斯蒂安·拉施卡|著
覃立波,冯骁骋,刘乾 | 译
全网疯传的大模型教程,由畅销书作家塞巴斯蒂安•拉施卡撰写,通过清晰的文字、图表和实例,逐步指导读者创建自己的大模型。
在本书中,读者将学习如何规划和编写大模型的各个组成部分、为大模型训练准备适当的数据集、进行通用语料库的预训练,以及定制特定任务的微调。此外,本书还将探讨如何利用人工反馈确保大模型遵循指令,以及如何将预训练权重加载到大模型中。还有惊喜彩蛋 DeepSeek,作者深入解析构建与优化推理模型的方法和策略。
《大模型应用开发极简入门:基于GPT-4和ChatGPT(第2版)》
奥利维耶·卡埃朗,[法] 玛丽–艾丽斯·布莱特 | 著
何文斯 | 译
深受读者喜爱的大模型应用开发图书升级版,作者为初学者提供了一份清晰、全面的“最小可用知识”,带领你快速了解 GPT-4 和 ChatGPT 的工作原理及优势,并在此基础上使用流行的 Python 编程语言构建大模型应用。
升级版在旧版的基础上进行了全面更新,融入了大模型应用开发的最新进展,比如 RAG、GPT-4 新特性的应用解析等。随书赠 DeepSeek × Dify 应用开发案例,书中还提供了大量简单易学的示例,帮你理解相关概念并将其应用在自己的项目中。
《一本书玩转 DeepSeek》
陈云飞(@花生)|著
超牛的 DeepSeek 应用书,作者是 AI 大佬花生,全书涉及 13 大场景,90 个实用案例,7 大技巧,4 大王炸组合,内容涵盖高效办公、副业变现、数据分析、企业级 DeepSeek 使用方案等等。带你轻松掌握 DeepSeek 核心技巧。
重磅活动
🌸4·23世界读书日
📚 小图邀你一起读好书
5折宝藏好书+盲盒不间断抽奖
还有惊喜9.9秒杀
图灵定制周边免费得
📍预约直播fun不停
转发海报还可领银子哦👇