数学家袁亚湘院士首版翻译,数值线性代数领域天花板著作!

08b44872eb1dbcc604835580eea25509.png

《矩阵计算》是已故美国科学院院士、美国工程院院士吉恩·戈卢布(Gene H. Golub)等人的经典巨著,是矩阵计算领域的标准性参考文献。是目前国际上关于数值线性代数方面最权威、最全面的一本专著,系统介绍了矩阵计算的基本理论和方法。

这本书也被美国加州大学、斯坦福大学、华盛顿大学、芝加哥大学、中国科学院大学等世界知名学府用作教材或参考图书。

图灵在2005年出版了该书的第一版英文版,先后出到第四版,而其中第三版开始翻译中文版,译者为中科院院士、数学家袁亚湘等人。

读者对这本书的评价一直很高,豆瓣常年在9.5分。也希望有更多的人在这本书的学习中有所获益。

来源 | 《矩阵计算(第4版)》

作者 | [美] 吉恩·戈卢布(Gene H. Golub) [美] 查尔斯·范洛恩(Charles F. Van Loan)

译者序

《矩阵计算》是已故美国科学院院士、美国工程院院士吉恩·戈卢布(Gene H. Golub)等人的经典巨著,是矩阵计算领域的标准性参考文献.该书紧跟矩阵 计算领域前沿,已经再版了 3 次,此次翻译的是该书的第 4 版.

《矩阵计算》一书的第 3 版由我国著名计算数学家袁亚湘院士等翻译,译者 在读书期间曾作为重要参考书来学习,此次翻译过程中,又做了参阅,在此对翻 译该书第 3 版的各位前辈表示真诚的感谢.也要感谢图灵公司数学编辑的信任和 辛苦的工作,感谢我的同事和学生的大力支持和帮助.

翻译这样一部具有国际影响力的传世之作,深感力不从心,书中肯定会有诸 多不足甚至错误之处,恳请读者批评指正,共同努力完善中译本,以飨矩阵计算 领域的后学者.

程晓亮
2019 年 3 月

前言

我与吉恩·戈卢布合作著书已有 30 年了,我们的合作始于 1977 年在约翰斯·霍普金斯大学举办的矩阵计算研讨会.在我的学术生涯之初,他对我的工作很感兴趣,这促成了本书第 1 版的写作.令人悲伤的是,吉恩于 2007 年 11 月 16 日去世了.当时,我们刚刚开始讨论这个第 4 版.在写此版过程中,我每天都会想起他的深远影响和广博的专业视野.谨以此版纪念吉恩,纪念我们的合作以及友好的研究团体,他那独特的个人品质给创作带来了极大的帮助.

自第3 版出版以来已经有16 年了,16 等于2 的4 次幂,这提醒我们,需要知道的有关矩阵计算的知识正在呈指数增长!当然,一本书不可能对所有重大的新进展和研究趋势进行深度覆盖.然而,在最近出版的诸多优秀教材与著作的帮助下,我们能够补充一些简短的论述.也就是说,第4 版的特色如下.

内容

篇幅上增加了大约四分之一.新增的节包括:快速变换(1.4 节),并行LU 分 解(3.6 节),循环方程组和离散泊松方程组的快速解法(4.8 节),哈密顿和乘积特征值问题(7.8 节),伪谱(7.9 节),矩阵符号、平方根和对数函数(9.4 节),Lanczos 方法和求积法(10.2 节),大规模SVD 方法(10.4 节),Jacobi-Davidson算法(10.6 节),稀疏矩阵直接法(11.1 节),多重网格法(11.6 节),低位移秩方法(12.1 节),结构矩阵秩系统(12.2 节),克罗内克积问题(12.3 节),张量缩并(12.4 节)和张量分解(12.5 节).

新增以下小节:递归分块LU 分解(3.2.11 节),行列选主元消去法(3.4.7 节),锦标赛选主元(3.6.3 节),对角占优(4.1.1 节),递归分块结构(4.2.10 节),带状矩阵逆性质(4.3.8 节),分块三对角分而治之法(4.5.4 节),叉积和各种点(面)最小二乘问题(5.3.9 节),多项式特征值问题(7.7.9 节)和带结构二次特征值问题(8.7.9 节).

实质性改写包括:浮点运算(2.7 节),LU 舍入误差分析(3.3.1 节),LS 问题的敏感度(5.3.6 节),广义奇异值分解(6.1.6 节和8.7.4 节)和CS 分解(8.7.6 节).


01

91337468ffe0c67c739d531d3c49f628.png

《矩阵计算(第4版)》

作者:[美] 吉恩·戈卢布、[美] 查尔斯·范洛恩

译者:程晓亮

目前国际上关于数值线性代数方面最权威、最全面的一本专著,系统介绍了矩阵计算的基本理论和方法。

美国科学院院士、美国工程院院士吉恩·戈卢布(Gene H. Golub)等人的经典巨著,是矩阵计算领域的标准性参考文献。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值