概率论是研究自然界和人类社会中的随机现象数量规律的数学分支。概率论的理论和方法与数学的其他分支、自然科学、工程、人文及社会科学各领域相互交叉渗透。已经成为这些学科中的基本方法。概率论(或概率统计)和高等数学一样。已经成为我国高等学校各专业普遍设立的一门基础课。
概率把常识简化为了计算。
——拉普拉斯
美国工程院院士,IEEE会士,麻省理工学院教授迪米特里•伯特瑟卡斯和约翰•齐齐克利斯的这部《概率导论》是美国麻省理工学院、斯坦福大学、加州大学等名校的概率论课程的教材,经过课堂检验和众多师生的反馈得以不断完善,是一本在表述简洁和推理严密之间取得优美平衡的经典作品。也受到国内众多学生的喜欢。
《概率导论(第2版·修订版)》
作者:[美] 迪米特里·伯特瑟卡斯,[美] 约翰·齐齐克利斯
译者:郑忠国 童行伟
我们在麻省理工学院开设了一门概率论入门课程——“概率系统分析”。本书在此基础上写就。
选择这门课的学生来自全校各个院系,他们背景各异、兴趣广泛。其中既有刚入学的本科新生也有研究生,既有学工科的也有学管理的。为此,我们在教学上一直力求表达简洁又不失分析推理的严谨。我们的主要目的是培养学生构造和分析概率模型的能力。希望学生既具备直观理解力又注重数学的准确性。
鉴于此,概率论模型中某些严谨的数学推导被简化处理了。或者只是给出了直观的解释。免得复杂的证明妨碍学生对概率论本质的理解。同时。有些分析被放在了每章最后的理论习题中。它们会用到高等微积分知识。此外,为了满足某些专业读者的需要。我们将某些推理过程中的数学技巧展示在了注解中。
本书介绍了概率论的基础理论(概率模型、离散和连续随机变量、多元随机变量以及极限定理)。这些都是概率论入门教材的主要内容。第 4 至 6 章包含了一些较高级的内容。教师在讲授的过程中可以选择部分内容。以满足课程大纲的具体要求。第 4 章介绍了矩母函数、条件概率的现代定义、独立随机变量的和、最小二乘估计、二维正态分布等内容。第 5 章和第 6 章较为详细地介绍了伯努利过程、泊松过程和马尔可夫过程。
这门课程在一学期讲授了第 1 至 7 章的几乎全部内容。只是略去了二维正态分布(4.7 节)和连续时间马尔可夫链(6.5 节)两部分。然而,教师也可以做如下选择:略去课本中关于随机过程的全部内容。这样可集中精力介绍概率论的基本概念。或者增加一些他们感兴趣的其他材料。
本书主要省略了对统计学的介绍。我们介绍了离散和连续情形下的贝叶斯准则和最小二乘估计。引入了贝叶斯统计理论。但并不涉及参数估计和非贝叶斯假设检验。
本书的习题可以分成三类。
(a) 理论习题:理论习题(用*标记)是本书的重要组成部分。具有数学背景的学生会发现这部分内容是由正文自然拓展而来的。我们给出了这部分习题的解答。但是,善于思考的读者会发现大部分(特别是前几章的)习题自己能独立地做出来。
(b) 课程习题:除理论习题外。书中还包含了难度各异的其他习题。这些习题是在麻省理工学院的讨论班上经常研究的。也是麻省理工学院的学生学习概率论的主要方法之一。我们希望学生首先独立地做习题。然后参考标准答案进行核对。这样可以提高他们的学习能力。答案公布在本书英文版的网页上。
(c) 补充习题:有很多补充习题并没有印在书上。但是在本书英文版的网页上可以查到,且越来越多。许多习题是麻省理工学院学生的家庭作业和考试题目。我们希望采用本书作为教材的教师同样可以利用它们。这些题目是在网上公开的,但是答案是不公开的。采用本书作为教材的教师可以联系我们得到这些答案。
我们要感谢许多为本书做出贡献的人。当我们在麻省理工学院接手这门概率论课程的教学任务时。就开始了写书的计划。我们的同事 Al Drake 教这门课已经几十年了。他的课程经受住了时间的考验。其经典教材对各个主题均有生动的描述。还有大量讨论班内容和家庭作业等丰富的材料。我们十分庆幸自己的工作有这样高的起点。特别感谢 Al Drake 给我们创造了如此有利的起始条件。
迪米特里·伯特瑟卡斯
约翰·齐齐克利斯
2002 年 5 月于麻省剑桥
01
《概率导论(第2版·修订版)》
作者:[美] 迪米特里·伯特瑟卡斯,[美] 约翰·齐齐克利斯
译者:郑忠国 童行伟
从直观、自然的角度阐述概率;适合理工科学生入门,便于自学。
本书多年来在美国麻省理工学院、斯坦福大学、加州大学等名校被用作概率课程教材,经过课堂检验和众多师生的反馈得以不断完善,是一本在表述简洁和推理严密之间取得优美平衡的经典作品。
02
《普林斯顿概率论读本》
作者:[美] 史蒂文·J. 米勒(Steven J. Miller)
译者:李馨
普林斯顿读本三剑客之概率论,概率论教材,叙述深入浅出,提供课程视频和讲义,概率论学习图书。
对于学生来说,学习概率论及其众多应用、技术和方法似乎非常费力且令人生畏,而这正是本书的用武之地。这本通俗易懂的学习指南旨在用作概率论的独立教材或相关课程的补充材料,可帮助学生轻松地学习概率论知识并取得良好效果。
本书基于史蒂文·J. 米勒在布朗大学、曼荷莲学院和威廉姆斯学院教授的课程而作。米勒通过先修课程材料、各种难度的问题及证明对概率论这一数学领域进行了详细介绍。探索每个主题时,米勒首先引导学生运用直觉,然后才深入技术细节。本书涵盖的主题很广,并且对材料加以重复以强化知识。读完本书,学生不仅能掌握概率论,还能为将来学习其他课程打下基础。
03
《概率论沉思录》
作者:埃德温·汤普森·杰恩斯
译者:廖海仁
著名数学物理学家,圣路易斯华盛顿大学和斯坦福大学教授,统计力学和概率统计推断方面权谋埃德温·汤普森·杰恩斯,40年思想著作;
无数读者苦等15年的概率论神作,英文版豆瓣评分9.4高分;
概率论作为逻辑的延伸,是所有科学推断的基础。本书收集了概率统计的各种线索,将概率和统计推断融合在一起,用新的观点生动地描述了概率论在物理学、数学、经济学、化学和生物学等领域中的广泛应用,尤其是阐述了贝叶斯理论的丰富应用,弥补了传统概率论和统计学的不足,并揭开了众多悖论背后的玄机。