2024年诺贝尔物理学奖揭晓!居然颁给了研究人工神经网络的两位AI大神?这8个有关他们的故事你可以知道!...

1ef2a8f039cc3d6b3b63b43057c47568.png

10月8日下午5点,2024年的诺贝尔物理学奖揭晓,来自美国的约翰·霍普菲尔德和来自加拿大的辛顿获奖。官方公布的获奖理由是,表彰他们“基于人工神经网络实现机器学习的基础性发现和发明”。

今年的获奖结果出乎很多人的意料。因为之前的诺贝尔物理学奖,一般会给物理学的理论研究,从未直接颁给过计算机科学相关的研究,特别是软件算法方面,更是没有先例。所以之前说到计算机科学领域的最高荣誉时,一般都是指图灵奖。

这次别说网友很震惊,连获奖者辛顿自己都表示完全没想到。所以也会有一些网友大喊“物理学不存在了吗”、“为什么物理学奖要颁给搞AI的”。

其实大家一点儿不用惊讶。因为诺贝尔官网的新闻稿上是怎么说的,这条新闻的标题叫作《他们使用物理训练了人工神经网络》

紧接着官方开始介绍这两人的研究和物理学的关系。例如,提到霍普菲尔德最著名的成就“霍普菲尔德网络模型”,就介绍说这个方法其实是基于物理学里的原子自旋理论产生的。而提到辛顿的研究,则说他著名的玻尔兹曼机研究中,使用了统计物理学工具。

诺贝尔物理学奖委员会主席艾伦·穆恩斯在最后表示,“他们两位的工作已经带来了巨大的好处,在物理学中,我们非常广泛地使用人工神经网络,例如开发具有特定属性的新材料。”

我不知道听了他们的官方表态,你是什么感觉。我第一时间想到的是金庸小说里的全真教和郭靖。在《射雕英雄传》里,全真教已经是顶级的名门正派,而郭靖是全真七子里的大师兄马钰的亲传弟子,不过郭靖之所以能成为一代大侠,更多是靠东邪黄药师和北丐洪七公的指导。而他的成名,对全真教的江湖地位也起到了稳固作用,包括后来郭靖还把兄弟的儿子杨过送上了终南山。

对,放到今天的诺贝尔奖里,郭靖就是霍普菲尔德和辛顿,全真教就是物理学派,这是一个强强联合,彼此名望互相叠加的好事。我们这些看客实在没必要争执“AI科学家到底能不能得诺贝尔物理学奖”这样的问题,这就像我们不要纠结“郭靖算不算根正苗红的全真教弟子”这样无聊的问题。

这两位获奖者的出生年月日和个人简历,我相信大家已经从很多新闻稿里看到了。如果你对这两位不了解的话,完全可以找一个AI助手,无论是ChatGPT还是Kimi、通义、智谱清言,对它说一句话“请用高中生能听懂的语言,介绍一下约翰·霍普菲尔德和辛顿”,它们都能给出合适的答案。

当然,在看AI输出的过程中,我们现在能用上这样的智能助手,也多亏了这两位获得诺贝尔奖的大神。

今天的分享,我更希望来讲一下这两位大神身上的故事。也许从这些故事里,大家可以获得更加立体的了解。

01

霍普菲尔德

曾开启AI第二个黄金时代

首先,约翰·霍普菲尔德在1982年开发了一个“霍普菲尔德网络模型”,这是用来解释大脑如何回忆记忆,解释了神经元系统之间如何相互作用来产生稳定的记忆。这个研究对物理学、生物学和计算机科学都有着非常显著的影响。

他的这个模型,不仅仅是后来的深度学习提供了重要的理论基础,更重要的是启发了后面一批类似辛顿这样的科学家投身于深度学习的研究。不过要理解这个模型的重要性,不仅仅是技术上的突破,更是它对当时的人工智能领域起到了雪中送炭的作用。

其实,人工智能并不是这两年才火起来的,在历史上也是经历了几次起伏。1956年到1969年,这是人工智能的第一个黄金时代,当时人工智能非常的火爆,吸引了非常多的眼球和投资,不过马上就进入了一个长达17年的低谷。

从1986年到1995年,这就是公认的人工智能的第二个黄金时代。霍普菲尔德在1982年提出了霍普菲尔德网络模型,1984年,他又用模拟电路实现了自己的模型,所以在很多科技史的书里,会认为,霍普菲尔德的研究成果,是AI第二个黄金时代的真正起点。

不过好玩的是,这个研究模型虽然是从对人类大脑研究作为起点,但是最受关注的反而是一批对复杂系统感兴趣的物理学家,他们就在一本交叉学科杂志上接二连三地讨论这个模型,后来就兴起了“连接主义运动”,这个名字特别抽象的学术运动有三个领导者,两位是心理学家,一位是计算机科学家——这位的名字就叫做辛顿。

这个连接主义运动的成果之一,其实是一本分为上下卷的文集,书名简称为PDP。全称就特别拗口了,叫作《并行分布式处理:认识微观结构的探索》。相当于这批学者的论文专栏文章的合集,第一次印刷就印了6000册,那可是没有互联网电商没有亚马逊的1986年,这本书后来被称之为神经网络领域的“圣经”。

02

霍普菲尔德不只是物理大牛

还横跨多个学科

今天,仍有人质疑这两位大神与物理学没有关系。其实,约翰·霍普菲尔德从出生起,就跟物理学有着密不可分的关系。

因为他的父母都是物理学家,所以他对物理可是从小就耳濡目染。霍普菲尔德的整个职业生涯,其实横跨多个学科,例如物理化学、凝聚态物理、分子生物学等多个领域,刚才提到的“物理化学”这不是两个学科,而是化学里面的一个分支,指的是用物理的方法来研究化学。

有一个细节可以展示他有多么的跨学科,那就是他在大学里都教了些什么课。毕竟如果一个本来教计算机的老师过两年去教哲学了,这肯定不是一件容易的事情。

我来罗列一下,1961年到1964年,他在加州大学伯克利分校做物理学副教授。1964年到1980年,他在普林斯顿大学做物理学教授。从1980年到1996年,他成为了加州理工学院化学与生物学教授,其中1993年到1995年,他还当了两年的加州理工学院院长,1986年到1991年,是加州理工学院计算与神经系统项目主任。

在1997年到2008年,他又成为了普林斯顿大学分子生物学教授。先不说这些名校的门槛有多高,单单是这几个学科的横跳就是只有大神才能做到了。

03

诺贝尔奖得主

独有的伯克利NL专属车位

刚才我们提到,霍普菲尔德曾经在加州大学伯克利分校担任过三年的物理学副教授。这次他获得诺贝尔物理学奖,除了那笔奖金之外,他未来还会获得另外一个非常实际的奖励,那就是加州大学伯克利分校的一个专属停车位。

因为这个学校有一项独特传统,那就是为诺贝尔奖得主提供专属停车位,在这些车位上标注有NL的标志,意思就是供诺贝尔奖得主永久使用。

我在今年年初去伯克利的时候,专门拍了几张诺贝尔专属车位的图片,我放在文稿里,大家可以看一下。每个车位旁边有个蓝色的牌子,上面文案的主要意思就是说,这个车位是给诺贝尔奖得主预留的,要停的话必须持有诺贝尔奖得主预留停车许可证,要是没有这个证的话,车就会被开罚单和拖走。

1b763230cd52c2594b69f203b07a1297.jpeg

356376a159ef532720b27e75eef7489b.jpeg

其实这也能看出学校对学术成就的重视程度,当时,一位伯克利的中国留学生跟我介绍学校时,说在美国学术圈有这样一句玩笑话,“世界上最远的距离不是从伯克利到斯坦福,而是伯克利停车场之间的距离;最难的事情也不是考进伯克利,而是在这里找到一个停车位。”

从这句话至少可以看出在这个学校停车位的紧张程度,不过这个事情还有一个数据值得了解,那就是在霍普菲尔德之前,据不完全统计,伯克利诞生的诺贝尔奖得主已经有110位了。简单点儿说,就是虽然其他人的人不能停在这些专属车位上,但是因为学校里得过诺贝尔奖的大神太多了,所以想停车还是需要早点儿去抢。

04

辛顿家世竟如此显赫

而且和中国早有渊源

我们接下来聊聊在AI领域更活跃,名气更大的辛顿教授,他身上的故事更加传奇。

刚才说到霍普菲尔德教授是物理世家出身,但是要论家族学术氛围,他就跟辛顿完全不是一个重量级了。

辛顿的高祖父,也就是辛顿爷爷的父亲,是19世纪著名的数学家乔治·布尔。只要大学里学过计算机基础的同学,都至少听过“布尔逻辑”这个词,这也是每一台现代计算机的数学基础。而他的曾祖父,是数学家兼奇幻作家查尔斯·霍华德·辛顿,他提出了“第四维度”的概念,后来很多好莱坞大片里的平行宇宙、时间旅行的设定,都是来源于这个概念。

辛顿的父亲是英国皇家学会会员,也是一位著名的昆虫学家。

辛顿的堂姐琼·辛顿,是一位核物理学家,也是当年美国研制原子弹的曼哈顿计划里,为数不多的女性成员之一,她那时是鼎鼎大名的物理学家费米的助手。

她的中文名更加好记,叫做“寒春”,她在1948年就追随未婚夫来到中国定居,两人1949年在延安的窑洞里结婚。丈夫阳早是奶牛养殖专家,两个人一直生活在中国,从事奶牛养殖与研究工作。后来2004年,寒春还成为了北京地区第一个获得中国“绿卡”的外国人。

辛顿的堂哥威廉·霍华德·辛顿,也有一个中文名叫韩丁,是一位著名的美国记者,他跟中国的关系就更加密切了。他在1945年以美国战争情报处分析员的身份来到中国,参加过重庆谈判,当时就认识了毛泽东和周恩来。1947年,他再次来到中国担任拖拉机技师,要知道他可是美国康奈尔大学的农业机械专业高材生,却来到中国教开拖拉机。

后来,他写了一本关于中国山西张庄土改的纪实作品叫做《翻身》。不过当时他也被美国政府列进了黑名单,禁止从事一切教学类工作。1971年,他应周恩来总理的邀请重返中国,先后和周总理会面过五次,成为了家喻户晓的“老朋友”。

除了这些人,像我一样年龄的用户一定知道一本小说,叫做《牛虻》,作者是女作家艾捷尔·丽莲·伏尼契,这本书在那个时代是一本爆款畅销书,从革命到爱情到励志,激励了很多人。这位作家就是刚才说的布尔的小女儿,按称呼来说,辛顿应该喊她曾姑母。

我不知道你是什么感觉,反正当我知道辛顿家族这些人物之后,就觉得他哪怕拿诺贝尔物理学奖,也不会太骄傲,毕竟他的血液里流淌的应该都是知识和学术。

05

打零工、做木匠、频繁辍学

辛顿的辗转求学路

也许是因为在家族里见过太多强大的亲戚,所以辛顿的求学生涯并不怎么顺利。他在18岁的时候进入剑桥大学国王学院学习物理、化学和数学,但是一个月后就退学了,然后去伦敦打各种零工干了一年。接着第二年,改修建筑学,这次他只坚持了一天。然后是哲学,也是半途而废。

他在中学就对大脑的运行感兴趣,后来就开始研究物理和生理学,成为了当年剑桥大学唯一一个同时学习物理和生理学的学生。1970年他剑桥大学本科毕业后,放弃了在剑桥大学跟随赫胥黎这样的顶级学者继续深造,而是成为了一名木匠,对,真的是那种做木架木门的木匠。

一年后,他发现做木匠对他研究大脑如何工作没有什么帮助,所以找到一个契机,就进入了爱丁堡大学的人工智能项目读博士。

多年后,当他参加一个学术会议时,一位同事介绍他的经历,说他物理不及格,还从心理学专业退学,然后进入了一个完全没有标准的人工智能领域。这时,辛顿会维护自己的声誉,声明:“我并非物理不及格,也不是从心理学专业退学。我是心理学不及格,从物理专业退学。”

06

在一个不被看好的赛道

坚定探索5年之久

辛顿对自己认定的事情,有一股强烈的韧劲,他今天得到的这个诺贝尔物理学奖,并不是天才科学家灵光一闪的故事,而是一个人在一个不被大家看好的赛道上,坚定探索的过程。

例如他在爱丁堡大学攻读博士的时候,他的导师希金斯当时正在研究神经网络,但是过了一段时间,希金斯受到了当时麻省理工大学的AI大佬明斯基的影响,认为神经网络是不可能的,所以学术叛逃到了AI符号主义的阵营里。当时1972年,正处神经网络最低谷的时期,明斯基表示神经网络所构想的永远不可能实现。

所以导师希金斯就劝辛顿放弃做神经网络,辛顿说再给我六个月,我会证明这是有效的。过了六个月,辛顿就磨磨唧唧的说再给我六个月,辛顿就这样在一个跟自己学术对立的老师手下,呆了五年,并且熬到了博士毕业。

07

百度曾试图招募辛顿

出价1200万美金

辛顿这种AI顶级大神,现在又获得诺贝尔物理学奖,大家是不是觉得离我们中国特别遥远?

其实不是,今天这个获奖消息刚公布的时候,国内机器学习领域专家、也是机器人技术公司地平线的创始人余凯就发了一条朋友圈,他说“了不起,我学习神经网络就是30年前从霍普菲尔德网络开始的,当时他是加州理工物理系的教授,而辛顿相信大家就更熟悉了,2012年我差点收购了他和两个弟子。”

cccb79a50aac43bc71179cc004c5eabb.jpeg

余凯说的这起收购在人工智能发展史上非常重要。那年秋天,辛顿和他的两个弟子发表了一个9页的非常重要的论文,这篇论文被余凯看到了,当时余凯效力于百度,他建议公司高层应该尽快招募辛顿,当时百度就为辛顿出价1200万美元。其实在这里,不得不说当年百度的很多人,在技术判断方面非常厉害。

辛顿当时也被百度的报价吓了一跳,但是因为还有其他几个公司都对他感兴趣,所以他就跟自己的两个学生一起注册了一个新公司。公司没有产品、没有营收,只有三名员工,开业的第一件事就是在美国的太浩湖附近的酒店里,把自己拍卖掉。

竞拍主要是四家公司,谷歌、微软、百度和当时还没有被谷歌收购,本身也刚成立两年的DeepMind。

这场拍卖本身也很有戏剧性,就是几个公司的代表,分别在自己的房间里发邮件报价,拍卖开始后,每次需要提价100万美元,然后有一个小时的时间供其他家提价,直到最后没有人加价为止。

当然,这种方式还有个有趣的小细节,微软代表抗议辛顿使用gmail,称有可能会被谷歌偷看报价。

这个过程还是挺刺激的,DeepMind和微软在2200万美元的时候退出了,最后只剩下百度和谷歌的鏖战,双方报价一路攀升,最后到了惊人的4400万美金,辛顿这时暂停了拍卖,因为当时的时间已经午夜了。所以对于学者辛顿,而不是赌徒辛顿来说,需要好好的睡一觉,考虑一下。

第二天,辛顿并没有趁热打铁乘胜追击,把自己的身价再往上抬一抬,而是直接决定把这个小公司,卖给了谷歌。当他告诉谷歌这个决定的时候,谷歌负责报价的人都非常吃惊,因为他们都做好了掏出更多资金的准备。

其实百度在这件事情上,已经非常体现出自己的技术前瞻性和魄力了,在2012年人工智能那么萌芽的时刻,愿意为一个教授掏几个亿人民币,包括后来余凯还为百度挖来了AI大神吴恩达,也不简单。

最后这4400万美元是怎么分配的呢?辛顿的两个研究生希望自己的老师拿40%,但是辛顿坚持三个人平分。当知道这个分配方案的时候,我还是非常震惊的,因为这几家公司的收购,其实都是冲着辛顿去的,可能辛顿拿80%,两个研究生一个人拿10%,学生也不会有什么意见,毕竟那也有400多万美金。

后来,在人工智能的低谷期里,很多美国大学都裁撤了人工智能专业,更没有了类似神经网络方面的研究。而当时在多伦多大学的辛顿做的很多研究,不得不用其他的名词来代替神经网络这个词,否则给学术期刊投稿肯定不过。他也持续的请求多伦多大学能聘任另一位教授和他一起工作,研究神经网络和机器学习,不过学校的答复是一直拒绝,理由只有一个,“一个疯狂的人做这件事情就够了。”

对了,这两个学生中的一个,就是最近两年备受关注的前OpenAI联合创始人、首席科学家伊利亚。

08

躺着“坐”飞机谈判

辛顿可能是第一人

最后,说点儿生活化的。

辛顿有非常严重的腰椎问题,完全不能坐下,所以他几十年在办公室里都是使用站立式办公桌,就连吃饭的时候都需要跪着。

当年谷歌去伦敦收购DeepMind时,需要辛顿这样的人工智能专家去压阵,但是辛顿又没有办法坐飞机,最后想到的办法,居然是谷歌找了架私人飞机,把辛顿用安全带绑在机舱地板上,就这样带着他飞到了伦敦。

对于霍普菲尔德和辛顿获得诺贝尔物理学奖这件事情,如果说全世界有两个人会不太开心,那么第一个人可能是AI大神杨立昆。

因为杨立昆、辛顿和本吉奥在2019年一起获得了计算机科学领域的最高奖图灵奖,获奖的原因就是因为神经网络。今年,在推特上,杨立昆和辛顿不止一次打口水战,两人对于AI的发展有很大的分歧。之前两人还都挂着“图灵奖得主”的头衔,但是现在辛顿多了一个诺贝尔物理学奖获得者,至少风头盖过了杨立昆。另外,从概率上来说,杨立昆再获得诺贝尔物理学奖的可能性就微乎其微了。

推荐阅读

35c59ea6a7ce30592424b0e660914c51.jpeg

《ChatGPT:人类新纪元》

马占凯 | 著

“搜狗输入法之父”、美团光年 AGI 布道师马占凯新作。本书用生动浅显的语言,用鲜活的故事,讲述 ChatGPT 前世今生、AI 发展史,获得罗永浩、梁宁、戴雨森、王建硕、王玥等大咖倾情推荐。附赠中国 AGI 全景图、ChatGPT 全景图拉页,让你对 ChatGPT 及 AGI 相关产业的发展一目了然。

c4b58ec1bda8cd062ba76fd56ac1db39.png

《这就是ChatGPT》

[美] 斯蒂芬·沃尔弗拉姆|著

WOLFRAM传媒汉化小组|译

OpenAI CEO,ChatGPT 之父山姆·阿尔特曼推荐,国内首部由世界顶级 AI 学者、科学和技术领域重要的革新者、“第一个真正实用的人工智能”搜索引擎 WolframAlpha 发明人斯蒂芬·沃尔弗拉姆对 ChatGPT 最本质的原理的解释的权威之作!

83c6e4558a052c9110b64a0994585958.png

《深度学习入门:基于Python的理论与实现》

斋藤康毅 | 著

陆宇杰 | 译

本书是深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术。书中使用 Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。

1f0e76ae59d79337ca485ab9ef26b487.jpeg

《深度学习入门2:自制框架》

[日]斋藤康毅 | 著

郑明智 | 译

豆瓣评分 9.9,深度学习鱼书姊妹篇,这套书做到了真正意义上的“入门”!书中没有使用内容不明的黑盒,而是从我们能理解的最基础的知识出发,一步一步地实现最先进的深度学习技术。

0ef2260881f036ab31c52e425bebe7b0.jpeg

《深度学习进阶:自然语言处理》

[日]斋藤康毅 | 著

陆宇杰 | 译

豆瓣评分 9.4 的畅销书《深度学习入门:基于Python的理论与实现》续作,带你快速直达自然语言处理领域!本书内容精炼,聚焦深度学习视角下的自然语言处理,延续前作的行文风格,采用通俗的语言和大量直观的示意图详细讲解,帮助读者加深对深度学习技术的理解,轻松入门自然语言处理。

db7f0b1d1fd6a04aace3c5cd13f88422.png

《深度学习入门4:强化学习》

斋藤康毅 |著

郑明智 |译

深受读者喜爱的“鱼书”系列第四弹,深度学习入门经典,从零开始掌握强化学习。沿袭“鱼书”系列风格,提供实际代码,边实践边学习,无须依赖外部库,从零开始实现支撑强化学习的基础技术。

d1598c64cd5d1bf292bd93da6a5a0ef0.jpeg

《深度学习的数学》

[日]涌井良幸、涌井贞美 | 著

杨瑞龙 | 译

一本书掌握深度学习的数学基础知识!结合235幅插图和大量示例,基于Excel实践,直击神经网络根本原理。

7fa4ea7eb230c92bf2f3c15c7dc72cbc.jpeg

《深入浅出神经网络与深度学习》

迈克尔·尼尔森 | 著

朱小虎  | 译

知名计算机科学家 Michael Nielsen 作品,哈工大研究生课程参考书,李航、马少平等多位业内专家推荐。作者以技术原理为导向,辅以贯穿全书的 MNIST 手写数字识别项目示例,介绍神经网络架构、反向传播算法、过拟合解决方案、卷积神经网络等内容,以及如何利用这些知识改进深度学习项目。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值