数字的魅力:数学中最重要的8个常数

d18b466cab1e63d93e805350a02a5f24.png

在数学发展的过程中,很多时候提出新的数学问题,开创新的数学领域,最初的动机并不是解释生活中的现象,而是因为它本身的美妙。几乎所有的数学家都认为数学是优美的。而普通人要如何感受数学的美呢?

数学科普大神顾森的这本《思考的乐趣》就从“生活中的数学”、“数学之美”、“几何的大厦”、“精妙的证明”和“思维的尺度”五个维度,用了大量的案例来展现数学的乐趣,每一个读过的人都会被深深吸引。这是一个热爱思考的年轻人积攒的让人一读就欲罢不能的趣味书。《思考的乐趣》出版至今,收到了十余万的读者的喜爱。

今天就选取书中那些关于有趣“神秘的数学常数”与大家一起分享数学的美。

我一直觉得,数学中的各种常数是最令人敬畏的东西,它们似乎是宇宙诞生之初上帝就已经精心选择好了的。那一串无限不循环的数字往往会让人陷入一种无底洞般的沉思——为什么这串数字不是别的,偏偏就是这个样呢?除了那些众所周知的基本常数之外,还有很多非主流的数学常数,它们的存在性和无理性同样给它们赋予了浓重的神秘色彩。现在,就让我们一起来看一看,数学当中到底有哪些神秘的常数。

01

af91a7e2eef518b162f6ade5cd3231f6.png

古希腊的大哲学家毕达哥拉斯(Pythagoras)很早就注意到了数学与大千世界的联系,对数学科学的发展有着功不可没的贡献。他还创立了在古希腊影响最深远的学派之一——毕达哥拉斯学派。毕达哥拉斯学派对数字的认识达到了审美的高度。他们相信,在这个世界中“万物皆数”,所有事物都可以用整数或者整数之比来描述。

然而,毕达哥拉斯学派的一位叫做希帕索斯(Hippasus)的学者却发现,边长为1的正方形,对角线的长度不能用整数之比来表示。这一发现无疑触犯了学派的信条,因此希帕索斯的命运非常悲惨,最后被溺死在了大海之中。与此有关的历史记载非常模糊,因此后人开始添油加醋,演绎出了这段故事的诸多版本,希帕索斯为何而死也是众说纷纭。不管怎样,希帕索斯都被人们当作了发现无理数的第一人。

利用勾股定理可知,边长为1的正方形,对角线的长度就是方程3fd588b9ef32f9482386ee4dc5f8242a.png的唯一正数解,我们通常把它记作7d69062dc56420946150e760a81d6cc5.png15e3b5b60264d54ff48dd9ec6f79c2d5.png可能是最具代表性的无理数了,证明它的无理性有很多种方法。最常见的一种就是下面这个反证法:假设89408d6125472e7e1e10d44f863af1bf.png可以表示成8048f7523df04f75dfe058dc11f3849a.png,并且假设9126e281f83755ab88cbbd2fad1c3c92.png已经是一个最简分数了。那么d571c1b08ace6e239b409637cfa8c872.png,也即0cb928276388105522fe8bc4fdb0f24e.png。这说明e00fe6c1f57ed8d5c1cb427b09b87de3.png是个偶数。但只有偶数的平方才能等于偶数,因此eca6b702c962b7027513ac1cdca0b1d0.png一定是偶数。cd46781fecae50e39c074af54023f60f.png是偶数就说明f8a0fbd51a70c036d0edb89a848fc515.png能被4整除,等式两边约掉一个2,可见15f1aa735a8ee9ccde6ba2f9c6fa0c77.png也是偶数,从而ff0c8c7cc24b8ede3c3bccec3b71ca55.png是偶数。这样,8c88234c20e2ef2b8d38ddd23af4caa1.png也是偶数,15a089f4f051acba799cd8956d21c695.png也是偶数,那么ccccfdc456131243e18616fede0b616d.png2ac780fd00ca3e76f145407415d92e7f.png就还可以继续约分,与我们的假设矛盾。

证明还可以更简单一些。同样假设c054e46c3822222d4bfbc9910d90e823.png已经是最简分数了,那么616d272baefdba515cee16721853c015.png,也就是74fb0d99a8c0c356cc04a2fa2a7cbe9f.png。注意到等式的左边是一个平方数,它只能以0、1、4、5、6、9结尾;等式的右边是一个平方数的两倍,它的末位则只可能是0、2、8。然而q2和2_p_2是相等的,因此它们必须都以0结尾。这说明,p2和q2里一定都含有因子5,从而p和q本身也都含有因子5,这说明cb46dbee67eda55e5825637488d8bad3.png可以继续约分,与假设矛盾。

我们还有一些更帅的方法来证明,3bf7aeabb4ef307bef14f605a60ea868.png没有正整数解。比方说,注意到,如果对一个平方数分解质因数,它必然有偶数个质因数(d29e3fa5480930ee20bc8f5cad8e7b48.png的所有质因数就是把39d00bc3729ffbdd9d06011eca40102e.png的质因数复制成两份)。于是,3f881abbb5841c1cfd2ff24f6d1964dc.png有偶数个质因数,1cdaeb25cf22f512a5261d902cf2d351.png也有偶数个质因数,f460134ab5cbef99c391c676f351fc28.png就有奇数个质因数。等号左边的数有偶数个质因数,等号右边的数有奇数个质因数,这显然是不可能的,因为同一个数只有一种分解质因数的方法。

无理数的出现推翻了古希腊数学体系中的一个最基本的假设,冲击了古希腊哲学中离散的世界观,引发了数学史上的第一次数学危机。

无理数虽说“无理”,但在生产生活中的用途却相当广泛。量一量你手边的书本杂志的长与宽,你会发现它们的比值都约为1.414。这是因为通常印刷用的纸张都满足这么一个性质:把两条较短边对折到一起,得到一个新的矩形,则新矩形的长宽之比和原来一样。因此,如果原来的长宽比为cf5e3586ffc341ba20da8d0786085c06.png,新的长宽比就是c1733b111c328976e35eb0bf1fb56490.png。解方程3274f540c1c607d790445e22fd74d4ee.png就能得到c5589e68a7ad0bc993453e5f5cf4cc4b.png

02

圆周率340009a1d57b982cafec4cf2e62800b1.png

不管圆有多大,它的周长与直径的比值总是一个固定的数。我们就把这个数叫做圆周率,用希腊字母ec0202f9d293c3da3ed3f40cf3f72c6d.png来表示。人们很早就认识到了圆周率的存在,对圆周率的研究甚至可以追溯到公元前。从那以后,人类对圆周率的探索就从未停止过。几千年过去了,人类对圆周率的了解越来越多,但却一直被圆周率是否有理的问题所困扰。直到1761年,德国数学家朗伯(Lambert)才证明了adc56257f8f48d745fa9ba8afd949bba.png是无理数。

3f5ca3105ba1033bfa8e657efb77feb7.png是数学中最基本、最重要、最神奇的常数,它常常出现在一些与几何毫无关系的场合中。例如,全体正整数的平方的倒数和就会收敛到一个与04dbb68e9c22e036652c9b00774998c1.png有关的数值:

b73028be637f5e7670d0225689140267.png

而任意取出两个正整数,则它们互质(最大公约数为1)的概率为17961aeaa1c9f12e3c298b599b4d63bc.png,恰好是上面这个算式答案的倒数。

03

自然底数979a19014b2a73356046d4cfd6c1160c.png

在17世纪末,瑞士数学家伯努利(Bernoulli)注意到了一个有趣的现象:当bdeebcccd87c0da033b944c1046aca10.png越大时,6e052d280485f4919bcda932ba158abe.png将会越接近某个固定的数:

ac024f734e13386eb0a8318fa1920835.png

7ef79473c09d2706d1ca97afbed115c6.png

1bc87ba998ded5ba8f12db110e91cc61.png

18世纪的大数学家欧拉(Euler)仔细研究了这个问题,并第一次用字母f17410d99a7566f2340d34a327d67332.png来表示当2eb42613d95eb4bda6b142c6b292d7e0.png无穷大时c0aec769db6925445938e14f5b0e2ad2.png的值。他不但求出了0dcf9b30889e0b6109462d195e22f42d.png,还证明了447e4c8ce3117a4fb2adffde63c411c2.png是无理数。d228b36780e8d8e59b425f83bb0de1c2.png的用途也十分广泛,很多公式里都有ecafaae096aacd219f0270f063c1aa67.png的身影。比方说,如果把前4eca2bb9a69f396cbf23338e12d19525.png个正整数的乘积记作1e9eaf374c8ca575d1094a60ef20295b.png,则有斯特林(Stirling)近似公式9fefc9a85587ea7fd8efb6258ebbcc38.png。在微积分中,无理数ecbcdb136ffd2b1be595f5322e5926e4.png更是大显神通,fc1d972a97e8d8463d17614e4ab15ee1.png的导数竟然是它本身,这使得caa880d7cfaa9c99ad675c82d37635e9.png也成为了高等数学中最重要的无理数之一。

在数学中还有一个奇妙的常数i,它叫做“虚数单位”,简单地说也就是4de2d36a9c52d1a0f0c985cd2986748a.png的意思。虽然7d244ecc9547c5cce7b03b25c5028a20.png看上去非常不合理,但若承认它的存在,所有的n次多项式都会有恰好n个根(包括重根),数系瞬间变得如同水晶球一般完美。可以说,圆周率π、自然底数e和虚数单位i是数学中最基本的三个常数。有一个等式用加法、乘法、乘方这三种最基础的运算,把这三个最基本的常数以及两个最基本的数字(0和1)联系在了一起,没有任何杂质,没有任何冗余,漂亮到了神圣的地步:

eπi + 1 = 0

这个等式也是由欧拉发现的,它叫做“欧拉恒等式”。《数学情报》(The Mathematical Intelligencer)杂志曾举办过一次读者投票活动,欧拉恒等式被评选为“史上最美的公式”。

04

欧拉常数35ce23423a789afebe6f9b047a3428a5.png

第一次看到调和级数6b3ed39235bff5c899a95e98f820e0ea.png,很多人都以为它会收敛到一个固定的值。其实,这个级数是发散的,无限地加下去,和也将会变得无穷大。我们很容易证明这一点:把96465eaf63927232accb6f95ac5d3656.pngfe1208b944d5b7d80c2ec954cf7d88d0.png都缩小到fc8d568d8d1c2d483cafba69ea75859b.png,把d23ef878b495ee78a83f40e043178e82.png9a4af2f1886261e9514be41b99e5393b.png这4个数都缩小到0f43c019ce61cc43fef6f0a27480fb26.png,把接下来的8个数都缩小到8860796d82d95a8000f54bbfb143f3c7.png,等等,可以看出数列仍然是发散的——因为这相当于有无穷多个d8529f9ddd3ff98d440eeb1e4176382d.png在相加。因此,我们不但证明了beb682906ed3ce4cb96deedc307164b0.png的发散性,还证明了数列的前72ef6d8201393337e5474c0db3204241.png项之和一定大于08b69b58778dcf82a5651a18d85b7494.png

虽然调和级数是发散的,但它发散的速度非常慢。把1f051ae300ef653362e5f659215070f4.png607b69f06bb65349926ab7f454a29552.png都放大到3d5e0b6afe049449528c8c9c27218cdc.png,把66b428d27b1a7aafb2e1209dafd7e735.pngd7865f7a668140570a826690b8eefa58.png这4个数都放大到f52053b97e9183f2e8c5c676fe65a970.png,把接下来的8个数都放大到57dc92d32db3d19777e331d131f53cd6.png,等等,可见前0e54e59795358ac94dfd22031ef93b88.png项之和不会超过a263ec360ff1c47a0d73a6b914fad5f8.png个1相加。按此估算,数列的前1 000 000项之和也不到20。

注意,b2011af4dfa72f05ef8faac1c9d444d5.png的前d1fc73890ba4a504bc269e845009a024.png项之和夹在了99ee23b4b24b697ddbb42124de0ac775.png692f40decf154691502610d4f364c13b.png之间,这表明它一定是对数级增加的。随着8d8167537fe88de29182e1567fd2c420.png的增加,d85e057dd8824fedd4c0cec3fa95cb1a.png将会越来越接近于24e1fa644d5b07f9534ce1eb0dfdcb6e.png。1735年,欧拉首次发现,当3cb2bff7e1395b3bce7e001ce0ee8bfb.png增加到无穷大时,661c280c6b971c4d529149b1dc0deb4b.pngaf88462e7e86ddbbef1e582442e069b1.png之间的差将收敛于一个固定的值。这个值就被命名为欧拉常数,用希腊字母1baaf12e08366bc7eb1ae73775d20039.png来表示,它约等于0.5772。

有趣的是,虽然大家都认为欧拉常数一定是无理数,但到目前为止还没有人能够证明这一点。现在已经知道,如果欧拉常数是有理数的话,它的分母至少是2f7cc76fc61b83e092485b589681ae5f.png

05

黄金分割15e8f52b29227511db9e5b8860c50071.png

把一条线段分成两段,分割点在什么位置时最为美观?分在中点处,似乎太对称了不好看;分在三等分点处,似乎又显得有些偏了。人们公认,最完美的分割点应该满足这样一种性质:较长段与较短段的长度比,正好等于整条线段与较长段的长度比。这个比值就叫做黄金分割,用希腊字母83074f1711f5b1050b81aac94f8dbc63.png来表示。若令线段的较短段的长度为1,则5ba4ad72c3396d0f60d1ee101bd89d4f.png就满足方程11ae028912930037c4bb18da185ff102.png,可解出3d57f80ce0dbea46b44eda872c9421f6.png

在美学中,黄金分割有着不可估量的意义。在那些最伟大的美术作品中,每个细节的构图都充分展示了黄金分割之美。在人体中,黄金分割也无处不在——肘关节就是整只手臂的黄金分割点,膝关节就是整条腿的黄金分割点,而肚脐则位于整个人体的黄金分割点处。

在数学中,黄金分割c471b3b8256a9c67213c2a1eb997d4fd.png也展示出了它的无穷魅力。例如,在图1所示的正五角星中,同一条线上三个点A、B、C就满足AB4422731d0c4597bf434eeb4021eb89f1.pngBC=4fe99aa78e27df85a378aa5857a77b12.png。在第12节讲到的8个算术游戏中,b8bf3e0e5a3289ff5c177b9b313ad707.png也出现在了一个出人意料的地方。

e8feaf2be232a1d7492f1bf8a8f609a9.png

图 1

06

辛钦常数9d09c17c85978619b835f5ed8ea59b30.png

每个实数都能写成973f707c7abed8056979172001fb5ece.png的形式,其中979bf6fa734c8041a480c1f23e949ecf.png,039573bee33dd527b5923220dd44099e.png,e04b46b854b12dbc037ecc68d89c7a63.png, …都是整数。我们就把63ce72adceed7cb4ba47e635dd7c5dab.png叫做该数的连分数展开。比方说,f98f054fe2007baf48255b6a0680eb7e.png是一个比3多一点点的数,大概比3多14db6db9f94515000d8f300a58a1db6e.png吧。但是,这个分母7还不够准确。事实上79b89597be3c6fd6407dc5f133ad5f62.png是一个小于8f23d5c254327f42d1c3598226b5da0c.png但是大于936c085cc5a50ee3c1931b868d7bc479.png的数,也就是说刚才那个分母应该比7要大一点点,因此c13595f58077a557ac174b283379724c.png可以表示成b9347a68e5b735a9a78365db85274fda.png。继续计算我们还能得出更具体的结果,1c791f3af969161be451338d315de15f.png约为a86f2cfd0601be33fdbf892af3ef132c.png,但是那个分母15比精确值还稍微小了一些,因此8dceecb7daf925da44007324ac80ff6b.png可以写作40fba5c1055b27fa8718744e67f87d0d.png。省略的部分又可以写成多少多少分之一的形式,其中分母又可以拆成一个整数部分加上一个小数部分。不断这样做下去,我们就得到了e85d074c86b2f11e3302f64ac1c1e5bf.png的连分数展开:f57b28ad9757459abcb13f7789375deb.png

和小数展开比起来,连分数展开具有更加优雅漂亮的性质,这使得连分数成为了数学研究中的必修课。

在1964年出版的一本连分数数学课本中,数学家辛钦(Khinchin)证明了这样一个惊人的结论:除了有理数和二次整系数方程的根等特殊情况以外,几乎所有实数的连分数展开序列的几何平均数都收敛到一个相同的数,它约为2.685 452。例如,圆周率a2dde4a3b6817e8a0bd959df5bff45ec.png的连分数展开序列中,前20个数的几何平均数约为2.628 19,前100个数的几何平均数则为2.694 05,而前1 000 000个数的几何平均数则为2.684 47。

目前,人们对这个神秘常数的了解并不太多。虽然辛钦常数很可能是无理数,但这一点至今仍未被证明。而辛钦常数的精确值也并不容易求出。1997年,戴维•贝利(David Bailey)等人对一个收敛极快的数列进行了优化,但也只求出了辛钦常数的小数点后7350位。

07

康威常数313c54a202ce6f8c4f1497c592ac2696.png

你能找出下面这个数列的规律吗?

1,

11,

21,

1211,

111221,

312211,

13112221,

1113213211,

这个数列的规律简单而又有趣。数列中的第一个数是1。从第二个数开始,每个数都是对前一个数的描述:第二个数11就表示它的前一个数是“1个1”,第三个数21就表示它的前一个数是“2个1”,第四个数1211就表示它的前一个数是“1个2,1个1”……这个有趣的数列就叫做“外观数列”(look-and-say sequence)。

外观数列有很多有趣的性质。例如,数列中的数虽然会越来越长,但数字4永远不会出现。1987年,约翰•康威发现,在这个数列中,相邻两数的长度之比越来越接近一个固定的数。最终,数列的长度增长率将稳定在一个约为1.303 577的常数上。康威把这个常数命名为康威常数,并用希腊字母b915d343ed764cd03c51b0c3b4f38290.png表示。康威证明了279f8fae5822ab64c0bb641170247ef4.png是无理数,它是某个71次方程的唯一实数解。

08

钱珀瑙恩常数dbe96a0c39c406f8a1b3afd21ed7d1c2.png

把全体正整数从小到大依次写成一排,并在最前面加上小数点,便得到了一个无限小数0.1234567891011121314…。这个数是由英国统计学家钱珀瑙恩(Champernowne)于1933年构造出来的,他把它命名为钱珀瑙恩常数,用符号c93f4730d032590c2e13849fe88fbd70.png表示。与其他的数学常数相比,钱珀瑙恩常数有一个很大的不同之处:这个数仅仅是为了论证一些数学问题而人为定义出来的,它并未描述任何一个数学对象。

钱珀瑙恩常数有很多难能可贵的性质。首先,容易看出它是一个无限不循环小数,因此它也就是一个无理数。其次,它还是一个“超越数”,意即它不是任何一个整系数多项式方程的解。它还是一个“正规数”,意即每一种数字或者数字组合出现的机会都是均等的。在众多数学领域中,钱珀瑙恩常数都表现出了其非凡的意义。

  推荐阅读

09e51d3815ae6f53ba292fed39701e70.jpeg

《思考的乐趣:Matrix67数学笔记》

作者:顾森

本书是一个疯狂数学爱好者的数学笔记,面向所有喜爱数学的读者。本书包括5部分内容,即生活中的数学、数学之美、几何的大厦、精妙的证明、思维的尺度,涉及48篇精彩的文章。即使你不喜欢数学,也会为本书的精彩所倾倒。

这是一本标新立异的趣味数学书。每一个读过的人都会被深深吸引。这是一个热爱思考的年轻人积攒的让人一读就欲罢不能的趣味书。

01

d19688c0c8fc9e75342c58fb8b727fcf.jpeg

《数学的雨伞下:理解世界的乐趣》

作者:[法] 米卡埃尔•洛奈(Mickaël Launay)

译者:欧瑜

惊讶!是思考的起点;

数学,是理解世界本质与万物关联的工具!

以数学为起点,以思考为快乐!

法国数学学会“达朗贝尔奖”得主科普名作。

数学,是理解世界本质与万物关联的工具,它能制造两个指南针:一个叫“实用”,一个叫“优雅”。不懂得数学的意义,就无法真正学习和理解数学。

科学家为什么那么聪明?因为他们有非凡的思考方法。

以数学为工具,以思考为快乐;培养自己的思考力、观察力,成为真正的思考者。

02

924870e4293697723db57019bf0b2402.png

《数学与生活》(1、2、3、4)

作者:远山启

译者:吕砚山、莫德举等

日本学教育议会创立者远山启力作,通俗讲解消除"应试数学"带来给初中数学高中数学带来的恐惧感,了解什么是数学,充分感受数学之美,培养理科逻辑思维。

《数学与生活》为日本数学教育改革之作,旨在还原被考试扭曲的数学,为读者呈现数学的真正容颜,消除应试教学模式带来的数学恐惧感。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值