高斯到底有多“恐怖”?压制数学界半个世纪的顶级天才!19岁的他便破解困扰数学家2000年的难题...

9eea62376a210ccbd11e66b9db897e5d.png

数学是科学的皇后,而数论则是数学的皇后。

——卡尔·弗里德里希·高斯

来源 | 《不可能的几何挑战:数学求索两千年》

作者 |[美] 大卫•S. 里奇森(David S. Richeson)

译者 | 姜喆

认为所有伟大数学家都曾是天才儿童的观点是荒诞的。在数学领域有很多大器晚成的人。但卡尔·弗里德里希·高斯不是其中之一。他的数学天分在年轻时就展露无遗。在他的黄金时代,高斯喜欢讲述这段经历:他的老师让班上所有人去计算算术级数的和,好让学生们有事可做,不会惹麻烦。这位年轻的天才推导出了这种级数的求和公式,然后马上拿着石板告诉老师他已经做完了:“Ligget se.(答案就在这里。)”但他早期的数学尝试不仅限于给老师留下深刻印象,他还是青少年时就得到了很多重大的数学发现——其中之一是我们故事中的一个主要情节。

高斯于 1777 年生于布伦瑞克,那里如今属于德国下萨克森州。因为在数学方面早早显露出天赋,他吸引了布伦瑞克公爵的注意。公爵开始授予高斯奖学金。这让高斯得以前往布伦瑞克卡罗琳学院,以及后来到哥廷根大学就读。高斯没有拿到毕业证书就离开了哥廷根,但他在那里发现了许多重要的数学成果。他从黑尔姆施泰特大学取得了博士学位。

公爵继续发给高斯津贴,这样后者就能把所有时间都投入研究中。但后来,公爵在为普鲁士军队作战时牺牲,就没有人再支付这笔钱了。因为需要工作,高斯接受了新哥廷根天文台台长的职位。他直到老年时期还在继续研究,最终于 1855 年在哥廷根过世。

不像持续发表文章的欧拉,高斯是一位完美主义者。他会暂时保留自己的发现,不断打磨,直到能发表一篇杰作出来。这些发现在被发表时一定十分成熟、极其深刻,并且令其他人难以理解;数学界经常要花上数年才能完全理解高斯的想法。高斯个人的座右铭用在这里恰如其分:宁可少些,但要好些(pauca sed matura)。数学家们不断地从高斯本人或是他留下的笔记中了解到,即便是数十年甚至数世纪之后的新数学发现,都有可能只是重新发现了高斯早已得到的某个想法。

高斯的研究领域过于广泛,我们无法一一描述。他为代数、分析、数论、几何、拓扑学、复分析、线性代数、统计学以及物理和天文学的很多领域都做出了重要贡献。

十七边形

1796 年,高斯开始记录他的第一篇数学日记。在头一年,它只是记载了高斯那一年的数学成就和发现(共 49 篇)。尽管很多记述晦涩难解(不只对于我们,显然对于晚年的高斯也是一样的),标注日期为 1796 年 3 月 30 日的第一篇日记却很清楚明白:

此时,除了这一句话以外,高斯什么都没写。就在离他 19 岁生日还有一个月的时候,这位青年发现了可以仅用尺规作正十七边形。不仅如此,他还给出了可作图正多边形的一般规则。同年晚些时候,他写道:

看上去,自从欧几里得的时代以来,人们就说服自己,初等几何的知识范畴已经无法再被扩展;至少我不知道任何在这一问题上扩展边界的成功尝试。那么在我看来,下述事实就更加非同寻常了:除了通常的多边形,还存在一些其他的可以几何作图的多边形,例如十七边形。

他继续写道:“这一发现只是一个尚未完成的更大发现的推论。一旦完成,我就会公之于众。”他确实还有更多东西要说。该发现后来成了高斯在 1801 年出版的《算术研究》中的一部分。该书是数论领域的一本杰出论述。

奥拉夫·诺伊曼这样评论《算术研究》:“它迅速被当时的专家们认可……为一本杰作。它的条理性、严密性以及内容之丰富都是前所未有的。它把数论从一座座分散的孤岛变成数学中一块正式的大陆……这本书是数学,也是人类文明的‘永恒经典’。”

高斯对多边形可作图性这一发现非常自豪。有些人说正是这一发现激励高斯成为数学家。他还要求把十七边形刻在自己的墓碑上。这一要求最后没能实现,但今天他的家乡布伦瑞克兴建了一座高斯雕像,上面装饰着一个十七角星。

有趣的是,高斯没有给出尺规作十七边形的作图步骤,至少在他出版的书中没有提过。但他证明了这样的作图是可能的。我们知道 602eb5e6bc9370436da3c1942b4d42e0.png 是单位圆内接正十七边形的一个顶点的横坐标。高斯只用整数、四则运算以及平方根表示出了 a0d129dcf05dab7ea87e66b737bccc1a.png 这个数。根据笛卡儿定理,这个点可以作图,因此十七边形也可以作图。

如今的文献包含很多十七边形作法。1915 年,罗伯特·高登林格写了一本包含超过 20 种十七边形作法的书,但一位评论家指出这“还远称不上完整”。假设我们已知一个以 6a030e49051d723d22128f3bd5f267e4.png 为圆心的圆,以及圆上两点 26db0de7c7fca69946576204292a640b.png645dc61f6030728576e92bdd58a76f90.png,并且 8c82885d89008de29dd58ec61f0fb106.png 是直角(图 19.1)。令点 b0cb17d4be0f2afcc191c6f19174c02f.png 到 900ef036060df7115473f9c48de355fb.png 的距离是 7e9f9c6ae0936af49302da4d6f1fb466.png 长度的 1/4。连接线段 b15399c9f4bbf209020fb06b23968251.png。在 5924effadc771f2001f59cb754fdb33c.png 上找一点 21f860f33616e82b763a2e1a4cf82d0c.png,使得 fb99e35363b3cac3005f12a3662726fe.png。在 f480c17b65539100773218bf1cdf182d.png 上找一点 846137a958723e3f8ee7c547fec27c23.png,使得 05125701d92a0143211076e9c8220afa.png。现在以 d9b6db53860e8ba7112c5e0c362b56b3.png 为直径作一个圆,交 dfa6d48aa87226e328bcaad35d900cea.png 于点 dfdebdad39b69b30b856866dc3ffa55c.png。以 31ec07a02c897546ee428c96039804d8.png 为圆心、以 bc81133ca5b445f241415d4f3baecb79.png 为半径作圆,交 7b182931152cca77d3606b30ce4b4b2f.png 于 1d8b8c14d12577e3abca61bd99d903f9.png 和 ec34c51caa6f92feb1cf3e47be72432e.png。经过 8af3f8fb188d89523e0b33eda658f16c.png 和 dd9e3a1b7c80ad330a03f53979b32836.png 并且垂直于 1d06d05d8271d86e07a8d97c8c42e523.png 的直线与圆交于 4 个点。这些点就是十七边形的 4 个顶点(890841f1012bfb54886ea8ae05a11b05.png 是第五个顶点)。用这 5 个顶点,就能作出剩下的 12 个顶点。

eb8c13efb50ca84983245ca49761e5ee.jpeg

图 19.1 十七边形的一种作法

高斯定理

高斯关于十七边形可作图的证明只是锦上添花。它的确是个容易让我们游行庆祝(或者将它永远地刻在纪念碑上)的结果。但它仅仅是一个优质样品,其背后是一个远更深奥的结果。

回想一下,古希腊人知道如何作等边三角形、正方形和正五边形。利用这些,他们也能作正 363956e8beaf1dee9f352909f82cd92b.png 边形,只要 47e3b5efcbc737c9ba80921cf14ae3b9.png 形如 e1b9023e61c22592e6f4b7b10a63139f.pngeb2136f0b9bbe8793ff32b1b0cec2b60.png6a0c0c041a329bccd42fa9a1ccae86ec.png 或 d42ece3187a63aad94ce6aef823acfff.png。高斯发现了使得正 ea6eb68c1964433c0459158fb008977d.png 边形可以作图的除了 3 和 5以外的质数 1b77ab2697a5f556e51a3a2c152c9f0e.png,例如 17。

质数 3、5 和 17 有什么特别的呢?结果证明,关键在于 ed0870dadce3f4570afeb4e5c15ce13e.png 在这三种情况下都是 2 的幂:6e9127cb0fa8df919eef55cda156adac.pngfaa12a52fdd78ba58697540f942fc783.png706d0fe94129494897d7e4d8e816bbc6.png。事实上,就连这三个指数也是 2 的幂:b4374ad300d5bfa7a6af9022fc6f5329.png17557e3b9d51227747859352d42a6f8b.pnge219ddf9a51abeef3f45a77c3068c512.png。我们把形如 fbcfe698bf427d80c8e8f787027818cd.png 的数称为费马数。如果一个费马数是质数,我们就称它为费马质数。3、5 和 17 之后的两个费马数也是质数:f2fa5ae67f0cbff76e458babaa8a45c9.png 和 572ee0e4b4599578e563b7551cbfae99.png。高斯在《算术研究》中证明了下面这个非凡的定理。

高斯定理:如果 9f627d7cbf56e032043e640199e9194e.png 形如 40dc17079111fe294d2135f2199de99b.png,其中 b07354551b840f6e7dd213c64c5390a1.png 且 cf2a450cbd95c07a836799186a0a8cd6.png 为不同的费马质数,那么正 33f985e3b8409f1f270ca405dc961ded.png 边形可作图。

高斯定理暗示了正 257 边形(由 F. J. 里切洛特于 1832 年作出)和正 65 537 边形(由林根的赫尔梅斯在经过 10 年的研究之后于大约 1894 年作出)可以作图。同样可以作图的还有 34 边形(34 = 2·17)、51 边形(51 = 3·17)、68 边形(35fca091abd9a783e288db6b9baaf611.png)、69 904 边形(179d9a29c0916834c289c47c1fcecfea.png)等。1000 以内的正 15e6820c2a40ad49dfba77b214bfed93.png 边形中至少有 52 个可以作图:3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272, 320, 340, 384, 408, 480, 510, 512, 514, 544, 640, 680, 768, 771, 816 以及 960。

尽管如此非凡卓越,高斯定理也仅仅部分解决了正多边形可作图性问题。首先,完整的答案至少需要知道哪些费马数是质数。这个问题有一段有趣的历史,我们等一下会来介绍。

与完整答案间更重要的一段差距在于以下问题:如果 e89bd7fb466264a88240749061437450.png 不具有上述形式,那么 e977f78ca8010b6eec2662b35d5a8931.png 边形是否可以作图?高斯定理没法处理七边形或者九边形——7 不是费马质数,而 4f22a4a89b0e0c1c3791db140304a3e6.png 是费马质数的平方。高斯定理还是保留了这两个图形可以作图的可能性。事实上,它们不可作图。而且根据高斯所述,他知道这一点。他写道,自己可以“十分严谨”地证明高斯定理的逆命题,但他又接着写道:

当前工作的局限性让我必须先在这里放弃这个证明,但我们要提出警告,免得有人尝试我们的理论没有给出的分割(例如,分为 7, 11, 13, 19 …份等),因而浪费时间。

这句话换种说法就是:“在这里给出证明并不值得。但相信我,我知道剩下的那些都不可作图。别浪费时间去尝试了。”皮埃尔·汪策尔在 1837 年给出了这一问题的严格证明(我们会在第 20 章更详细地介绍这一点)。

把高斯和汪策尔的定理合在一起,我们会得到一个新的结果。

高斯–汪策尔定理:当且仅当 ca3b452962a55bef036beccee81a7c1b.png,其中 4ed3f57561dd44c99e0491c72008d0b7.png 且 eb2c97d8038568163b9a6c565fd48a6d.png 为不同的费马质数时,正 db8fb31977ef3cd493db9b2524a6d031.png 边形可作图。

费马质数

感谢高斯–汪策尔定理,我们可以知道究竟哪些正多边形可以用尺规作图——至少在理论上。在实践中,我们需要知道哪些费马数是质数。而这还是一个悬而未决的问题。

对该问题的研究可以追溯到 17 世纪前半叶。费马发现当 j=0,1,2,3,4 时,cccede86dbc4bfcfc542f8a3c4267ea2.png 是质数(3、5、17、257 以及 65 537)。他猜想所有这样的数都是质数。在 1640 年写给贝尔纳·弗雷尼可·德·贝西的一封信中,费马列出了前七个费马数(第七个有 20 位数字)并写道:

我还没能证明,但我已经通过绝对可靠的证明排除了很多因数。直觉是我思考的基础,而我产生了强烈的直觉,那就是我很难撤回这一猜想。

费马在 17 世纪四五十年代不断地重新研究这些数。在和数学家们的通信中,他总是主张这是一个质数序列,但他也承认无法证明这一点。如果这是正确的,那它就会是一个伟大的定理。从古希腊时代,我们就知道存在无穷多质数。但我们始终没有一个生成质数的方法。而费马的公式带来了质数生成函数的希望。

这一猜想在随后的半个多世纪都未能得到证明。随后,22 岁的欧拉加入了进来。他当时刚刚接受了位于新兴城市圣彼得堡的科学院的新工作,正在安顿下来。当时刚刚从圣彼得堡搬到莫斯科去指导彼得二世的克里斯蒂安·哥德巴赫,也从这时开始了与欧拉之间长达 30 年的包括将近 200 封信件的书信往来。

1729 年 12 月 1 日,在他给欧拉的第一封信的附言中,哥德巴赫提到了费马问题:

又及:费马发现所有形如 d04ecbe8ccbd6fd4b13094fa49f1817b.png 的数,也就是 3、5、17 等,都是质数。他自己承认无法证明,而就我所知,也没有任何人证明了这一发现。

欧拉起初对这个问题不感兴趣,但哥德巴赫一直刺激他。欧拉终于提起了兴趣,把注意力转向了费马序列。1732 年 9 月 26 日,欧拉向圣彼得堡学院提出了结论:费马猜想是错误的。在补充文章中,他写道:

但我不知道出于怎样的命运,结果证明这序列中紧接着的一个数,7b46ecb74a157b5aecbea4bf87bcc8a6.png,就不再是质数了;我在思考了很多天之后,发现这个数可以被 641 整除,任何想要检查的人立刻就能验证这一点。

通过证明 b75cef5289dd3355b6f0c57657bbd8af.png 存在因数 641 和 6 700 417,欧拉让费马找到质数序列的愿望破灭了。欧拉是怎么找到这两个因数的?暴力查找并不是没有可能。尽管 0d2ff400ecadb8b23b8b30259263d59b.png 有大约 6500 个可能的质因数,如果我们从 2、3、5 开始一个个检查,只要尝试 116 次就能找到一个因数。〔事实上,当八岁的“人形计算器”齐拉·科尔伯恩(1804—1840)在全美巡回展示自己的心算能力时,“有人向这个孩子提出了这个数(a17aae7c9a82fe7cbc46a394707a7acb.png),而他仅靠心算就找到了因数”。〕这当然不是欧拉所用的方法。

欧拉在第一篇文章中没有解释自己怎样得到了这一因数分解。但 15 年后,在另一篇文章中,他解释了他是如何找到 641 的。欧拉使用了“费马小定理”。费马不加证明地提出了这一定理,而证明最终由欧拉在 1736 年完成。欧拉用这一定理证明了对于整数 357855f86a40d9402e1e22c5a3a730e4.png,如果 be92013c8f268b5cd62367f7113e9862.png 存在质因数,那它一定形如 8d6d300970f5b3ac90f2e18faa86a568.png,其中 3a75d6b221e2c43f17f958d38b9094f5.png 为整数。因此,欧拉只需要检查形如 139823ac23bb2c00ba3be68c8400379a.png 的质数。前九个具有如此形式的数中有四个是质数——193、257、449 和 557——但它们都不能整除 670ebb47e38d6b5acc28131b314c1c4f.png。而第十个数就让欧拉获得了成功:64·10 + 1 = 641。

费马没能因数分解 31376f765e52cd15afb3502307a46ffe.png 有些令人惊讶,因为他曾用与欧拉的方法非常类似的技巧分解 502845bf13b2bacf8d9a3306964ac45c.png。但正如安德烈·韦伊(1906—1998)所写:“我们能想象到,当(费马)第一次想到这个猜想时,他被自己的热忱冲昏了头脑,犯了个数值错误,再也没有检查过他的计算过程。”

费马发现前五个费马质数之后的 370 年间,我们没有再发现新的费马质数。目前,我们知道接下来的 28 个费马数都是合数。有 25 亿位数字的巨数 

2f02540a815235142c2809675c9ad7c0.png

是第一个素性未知的费马数。

单位根和正多边形

我们在讨论高斯定理的证明前,要先回一趟复数的王国。我们先来看一个看起来很简单的问题:ee1519a5b21f34557b47b6c6fb091f82.png 是多少?是 1,对吧?当然对。如果我们求 1 的四次方,那么结果还是 1。不过,1 不是 1 唯一的四次方根。它还有三个四次方根:-1、i 以及 - i。因为 ae050aab2624080a640d439dcf54d0bb.png。一般来说,cfc7df590fb44b6f3e176fd3ae755505.png 次单位根指的是方程 63b7fc230a3954639d38a9d1b682b761.png 的任意复数解。四次单位根一共有四个:1、-1、i 以及 - i。

如图 19.2 所示,四次单位根是复平面内单位圆内接正方形的四个顶点。尽管麻烦,但也不难验证 ±1、4d85407070d723ffa8f7f02c9580c9e7.png 是六个六次单位根。它们是单位圆内接正六边形的顶点。所以,圆内接正 d072ba9644abad72d6492fd1c922f975.png 边形问题和 13fadf06fafa43cfe104ea9949314263.png 次单位根的值紧密相关——单位根就是多边形的顶点。

471b62a54f877c66fb3029a8a0a268d9.jpeg

图 19.2 单位根构成了正多边形

我们可以用欧拉公式来验证这一断言。假设 4d53d88f8ac3d3eac2401ee45dcfea62.png 是 187ebb3cad8b594ca66797de22f0c06e.png 次单位根。那么 9ee4d2a2b4a42621fb831f7d628f4426.png。要使此等式成立,必然有 7b7e2771ccdeb99361117c8387c29305.png。又因为 eda99aefe91e324b767f271ca91aa8c8.png 是一个非负实数,所以 38b076ad27818aace1435584b4ec7975.png。所以 1d3d0aa4e4ca3dee3c9995cc28af523b.png,因此 719c1974c867ca0f8d7205c68d21edda.png2b5ec4e8816843422cecb8fb5175d1fe.png。要让这两个等式成立,f3c88bb0460d6501805b77b96aeac8da.png 需要是 360°(用弧度制表示就是 89c5f9bacbda210d077185233918955b.png)的整数倍,这等价于 c6994065d91dc203ffd5bf9563135980.png,其中 da00f590b46ae876f62d622a40fa06c3.png 为整数。所以,98da9af38b2d137c63f812ef0e47a05c.png 次单位根就是 f49eaa779278537c6cf9a47ede64158b.png,其中 27778b67a3d3129ac7f5c3f1d1fa9d1a.png。用这种方式,我们就能看出 d0ab276999c54b06a7ea89b1bd4770f5.png 次单位根其实是单位圆上距离相等的 202e8fe10faf2aa5c9ca0496276a2ed9.png 个点。

如果 29e1a42b2583f019827e96b40b805482.png,我们就会发现六次单位根都是形如 d4b0be0dd40eed4a3e95c98dc55bad86.png 的数。比如,当 05234d785220f55b72639ec9a04acd68.png 时,我们有 9d32a9e85931721966a2ebb3bc0f2554.png。当 8915f5cdfeb9cb558e36a710a93f9d2f.png 时,我们有 e450a5f04084a61494aac22896735de2.png

因此,高斯意识到,要解决多边形问题,必须求得 c3b6856d24ab028543b6be3fb5d2e158.png 的根。如果 b3231c5970c554a1110d0d5b8e52233d.png 的实部和虚部能用四则运算和平方根表示,对应的多边形就可以作图。事实上,如果 80b6ae6394d21672f35d6280f876616a.png 可以作图,02ed2cb0dc99b079384ea215f1ebe194.png 亦然。

高斯不是第一个考察 249b85df27077fc89c7d1707311961a7.png 的数学家。1740 年,欧拉证明对于 2a82b858ea105b838cf7606142b06d40.png,方程 b5b4a1ed70129279b383e91018c52d9c.png 有根式解;也就是说,这个多项式的所有根都能用四则运算加上平方根、立方根、四次方根等表示。1770年,亚历山大–西奥菲尔·范德蒙(1735—1796)证明了 ca23548f583bec00cecbea4bf5f70c22.png 的情况。这些都是重要的数学成果,尤其是事后来看。因为不是所有 5 次或更高次的多项式都有根式解。但它们还是没有回答这些多边形能否作图的问题。为此,我们必须证明这些顶点的表达式只用到了平方根,没有其他次方根。而这正是青年高斯所发现的。

高斯的证明思路

高斯的《算术研究》的第七个部分,也是最后一个部分,专门讨论作正多边形问题。他的证明依赖于数论、方程理论以及复数性质。从一种角度来看,这个证明是关于多边形的可作图性。但实际上,它是对形如 4bb2b126ddfd1ade8f3605a652c626db.png 的多项式的研究。

每个数学家都知道并且享受那些美妙的“啊哈”时刻。它们总是出现在最出人意料的时间——淋浴时、开车回家时、遛狗时、吃饭时或者躺在床上时。日复一日、年复一年地专注思考一个貌似难以解决的问题,会让头脑在潜意识中灵光一闪。答案通常都是在放松的时候涌现,就好像是上苍的启示一般。高斯就描述过一次这样的经历:

我当时在布伦瑞克度假。经过努力思考(07272882fba2b40b193baa9c5afc416b.png 的)所有根之间在算术性质上的联系,我在那一天(起床前)成功地看清了这个关系,所以我得以当场把它应用到十七边形这一特殊情况上,并且进行了数值验证。

高斯定理的完整证明不在本书论及的范围内,但我们可以介绍他的大体思路。我们首先展示他的论述在正五边形的情况中如何展开,然后简略叙述十七边形和更一般的正多边形的情况。

我们把五边形的顶点看作五个五次单位根,也就是 d7aded8b3fa792241d6b7a32826652ea.png 的五个根。其中一个根是 07d54359c8d69484aa695725173e6aa5.png,所以多项式可以被分解为 89b122c69f8b7b9f2067467b927dfe3a.png。因此我们只需要关注 37594b2a20851069c32c925fdf692148.png 的四个根。如图 19.3 所示,它们是两对共轭复数:73ec7f2d31695c5acd986313502ba614.png 和 4bb4d8da73d765f3b0260c2aa28e6b58.pnged29796f240ef206094e5cc293c0507f.png 和 e765395f9ee340f151b9ef5827f0bc63.png

e1bdddb2339ea6dc956aa8b4dc70646e.jpeg

图 19.3 复平面的一个正五边形

这两对共轭复数有两个友好的性质。首先,和其他共轭复数一样,当我们把它们加起来时,虚部会抵消,实部会变成两倍。所以 c7dbb99d0dbf951cabfb1bbeedfaa04a.png。其次,它们都在单位圆上,所以互为倒数 :1c2035c8df8481b2606fe46c6fe0954f.png。应用这两个性质,我们发现

756563cd57cb51863d49a9bf6b964e8f.png

我们想求满足 ab16b3b7dcc9ee17abd841ece586bf9d.png 的 08f7a486d91b53ef51fcd59eee9b1c8b.png 值。但因为知道 f5361636b11ea4a941ee4c018f5240e9.png,所以我们可以把方程两边同时除以 e0152f5c00da865a8b3501dfcfa06be8.png,这样可以得到

2ec8f48288d318f8225225a8f2c5552b.png

其中 5fbc29a5f4975139975fe3d91b52b559.png。根据二次方程求根公式,028036721c90de170dba3cb4418b4268.png

到这里就可以停下了;我们已经获得了足够多的信息,足以用尺规作出正五边形。这两个实数是五边形剩余四个顶点的实部的两倍。所以 aaa9dc24d6fcd901fc824f14fd85196a.png。正如在第 1 章所描述过的,我们可以在复平面作出点 17709e7067455c6ceb36843930488936.png——或者说笛卡儿平面中的点 121984f89adc695c914d6fe61108b6e5.png——然后过这一点作实轴的垂线。垂线和单位圆交于 c4a2e179c0f6a35d6586f0e9d2e2ce5c.png 和 14556c95f380f26c3a832396cef6ffd8.png。然后我们就可以用圆规找出剩余的顶点。

不过,我们还是不要这样做。让我们继续行至终点,求出所有顶点的坐标。因为 f6385117637add2648b1696e02a86e1c.png,我们可以通过解二次方程 88cb70ef4c67a3b84275b095791efbf5.png 来求出 e089956e2299ab7e9464c1e5a4c3195b.png。其中,e21414f439ab7fec40c2b62ac721900e.png 的值就是上面求得的两个根 bd8f8620d10708ed7391542a9f883257.png。点 e65e3a6e7500fd1c06ec7c41e7c6e021.png 和 4027b658fcf224ac54493dce4676076d.png 是二次方程 a066bcbeb95d306cd8067eafd86331cc.png 的根。由求根公式可知,它们是 1dc1e91a2f9c755976003301d0bff8b3.png。所以这两个点的坐标是 bb438e1535008c1ec0322e4aaf583275.png。用类似的步骤可以得到另两个顶点:075010fb040de998d081266ec12c89dd.png

这些复杂的计算中可供我们借鉴的地方在于,要求四次方程的根,我们可以把问题简化为求三个二次方程的根,其中一个根的系数是整数,而另两个根的系数包含第一个的根。最后,这些顶点的坐标包含有理数的双重平方根。

高斯对于十七边形的分析与此类似,但需要解更多的二次方程。这些二次方程的根可能包含更多双重平方根。我们简略介绍一下其中涉及的数学。

如图 19.4 所示,假设 747100df38b8393e9a8d037b9fc13aca.png 是正十七边形的顶点。高斯证明了一个有关质数的定理,该定理让他能够用一种特殊的顺序排列顶点(4cc70d9cf6f9aaaf311989901be24d40.png 除外):7d89ae6fcc1c0ff7036c095e04170151.png。他证明,隔项求和得到的两个复数

6e97fabfff8e53ea48c74462e79069e3.png

是二次方程 f96d3b988793f7c3068e004dd0605f29.png 的根。因此,71890bdc618278db0d718aacad1d3d4f.png 和 43b1c717a2c233fa1b92e3fcb86cd7fc.png 可以用平方根表示;具体来说,0fda19fe9e1851f21ee042e86cf2d40a.png878a8ad25d09a5b8cede6519943b4294.png。接下来,求 c633f8de253c0d6a0f3954fc7779740a.png 的隔项和,得到复数 4aca756b96c191a3af8b09f9c6b61f91.png 以及 7753296b279e72f9b0b39b4ed4a8ae06.png。求 32c0ea59c5577f2397e0576d33a8f562.png 的隔项和来得到 a44d225920e48078a651806a4cf235bf.png 和 fac451688be86b30e5477a9102ef3d37.png。这两组复数分别是二次方程 33992824a119456877604ba480004c0d.png和 2c277e73cf998e6140e388199f66e71b.png 的根。所以它们也可以用双重平方根来表示,比如,97a521cda647853feaaff1add185ccf3.png903d24b1a35874019ac24bd089546368.png。最后,用类似方法定义 7e5feda91024e1e357d108ace74cc2ac.png9c0780332ca8ac84e726a122e0650c8f.png,直到 ab751571a4c5e5a20e2a688939307bc7.png。这些值是以整数以及 0e523c5e8ba54a94cc10f7b74697852f.png9cdbbcc7149e9b7b0b9650ef93a2995c.png25e09a8f173e7b5535fae6588080118f.png295fc5fd530fe6c43dd6125bd7b84a92.png 为系数的二次方程的根。例如,457d05ca2d7c594643a6117da6d33888.png 和 23970beb8b90c1501e07808f5bc10854.png 是方程 f6ac05d9926dcea8e4f0ef14b1c1f0f2.png 的根。因此,这些根也可以写成多重平方根的形式。以 919fd632be32869d6b55e489e47d3611.png 为例,我们有 81b416d00ed76caad29aa75c8494a8d5.png。最后,我们能发现 8e8856a8ff10e23160393d47c98cf24e.png 是 dc42e23201b6f0691505b6ba80952953.png 的共轭复数,因此 1b25a3c7699394c461ba3b5f0ad1c8d7.png。如果我们把 2a67d5599411258af89cc32e1bb370da.png 和 266c01f34997387d63c58ccaaf13d0d9.png 代入 dec0c83f8a0ff76802368848e4e8999e.png 和 050d2a0eee466eabb08157e0f6a4ed02.png,再把这两个值代入 b998898f4e27cf66082a08866cd87596.png,然后化简,就能得到高斯推出的表达式

666cd69b3d1f3de7bc8fb3a8149d3a3e.png

而这个数是可作图数!

9b75779e59e94a9d9c43dad1adcb443a.jpeg

图 19.4 复平面的一个正十七边形

这大体上就是高斯使用的方法。他想要求 d356f2994715dad01581e0fef3c97add.png 的根,其中 af75a9b4d7c4a1b3484c125e45edf9dd.png 是质数。因为 ac7f823bdb1c70ab30544bc974ddaba7.png 是这个多项式的一个根,我们只需要求 ce56dc70f790943a74ded15bfb030462.png 的根。a20f8c46801d0d6423366afd1718fafa.png 是质数,但 25a0d117545e08d122b2606e409d0ec8.png 则不一定是质数。假设 8a94c83ff4db97e6a053167e96dd55b6.png 可以被质因数分解为 356b46c9141a34bd4a474c324264ad1d.png。高斯把这个问题化简为依次求次数为 5100c2d3ddb4ad85a74c635102e9d89c.png 的多项式的根。第一个多项式的系数是整数。后续多项式的系数由前面已经解出的多项式的根决定。

高斯发现,如果 582bbb8ef91919fd856a06ac5c780ae3.png 是 2 的幂,那么 4c13a2adf7a6b2f88b15b9300a7f0683.png。所以我们就能通过解一系列二次方程来求得 d78eda2513e248c2ee0d2c833b835393.png 的根。因此这些根都是可作图的。简而言之,如果 eb20c41685e8e86d89493d9db5daa5b5.png 是质数,正 9ffa5231681dd4bc0661c8ed5c0ea52d.png 边形就是可作图的。

这个 8baf2b2ed20471b70483495a54636da2.png 值仍然不是费马质数的形式。但是,如果 d9aa73546c1662864428583212ba67d0.png 是质数,那么指数 0637b7af187f2db261103dff4bbf5de1.png 一定是 2 的幂。

假设 0fd1e6ed04a30e6247c151f0955e2e16.png 不是 2 的幂,那它就有一个奇因数 d83aac6adb9b4b523cba5b0c672d73ac.png。于是我们就有 7d434cfc86ced210820d10df7188e74f.png(有可能 5ea76f66263505c54310b5472f4a2a27.png)。这样的话,

3b8851a2ae859696490d4caec90da2a7.png

也就是说,3bdc1d299ccd7082104918ac7c720b06.png 不是质数。

最后,假设 2573e489625c02bddd17f0a3b84ab39d.png,其中 2aa429019c38041cfc706e2c15abf0f2.png 且 6f217d9aabf0b33b27ab6b2b5055e774.png 为不同费马质数。我们可以先作出正 c521a314864a732fa4668c5264d4a7ed.png 边形,然后使用基于等边三角形和正五边形作正十五边形的技巧,作出正 ce348b2f4c13eb4a0696b20fbe03f805.png 边形。最后,再加倍边数 68ed56fb64342749026cb017061ec4f5.png 次,就可以得到正 4944b064f65db879d9c08a8cee6f55ae.png 边形。这样就证明了高斯定理。

闲话 镜子

魔镜,魔镜,告诉我,谁是这世上最美的女人?

——格林兄弟,《白雪公主》

米拉镜由乔治·斯克罗吉和 N. J. 吉莱斯皮发明。它是一种帮助学生们学习反射和对称线的教学工具。它由一块有色的亚克力玻璃,以及保持玻璃直立的支架构成。米拉镜的关键特性在于,它既是透明的,又是反光的。所以它既是一面窗,又是一面镜。

要求点 bdbb3b4557f3480188d4e032d36512f6.png 关于直线 0c26afa28c06ae58eb500b810a86a995.png 的反射,我们把米拉镜沿 4aedcf571a5a0e709718594a0bfbc262.png 放置,然后在玻璃的另一端标记出与点 3a8b6e14b522fbbb25c6d1085779f6ba.png 的镜像重合的点(图 T.31)。要求点 2610b6f1b650346ef0a89e52faa3a526.png和另一点 5448d60d3bf3235bf53dc9163384faa8.png 之间的反射轴,我们把米拉镜放到使得 eefb9c77857bcc34d4852139e9180151.png 的镜像与 22d590d272b841a8267ef270ba7b0dae.png重合的位置,然后沿着玻璃即可描绘出反射轴。假设经过一个点存在能把另一点反射到已知直线上的直线,我们可以用米拉镜找到这条直线。图 T.32 展示了第四种用途:已知点 723eea4d4c96052d4238fcb7f1909357.png778fdf69bd4a906f27524c52cc1b2b53.png 和直线 b4bb7c3cb00c691f99983dcfc46a8f76.png3259cfb2994ceacaacb6bd652893bbc4.png,我们可以摆放米拉镜,使得 aa0140b0b17f9fe28b0236df699d1c77.png 和 433f3a341ebd3bb7100ba84be4d304eb.png 的反射分别落在 562bd1ef858c5f07c6acb7409739747e.png 和 65a2985a073bc86fd2d688b5fbba7728.png 上。

58cacddcbc5358d3a50a333ca36fb909.jpeg

图 T.31 米拉镜关于直线 6513f692204db646d2014594b88ccc05.png 反射点 c106fb2986e11bb92f32937b13e81a07.png

2bddddbb4ddf02e986c6e3fba2d041ec.jpeg

图 T.32 米拉镜把点 5a2aa0f8d2a34159a14cb338438b2fb5.png 和 738684a1ffdbabe3c7e7cd897d0c02c2.png 分别反射到 096e1525bcf2f165c5edb46209e50b91.png 和 f6ebdc93c3a8f497ec7ae1acde72c1e8.png 上

令人惊讶的是,这四种操作十分有用。我们不妨想象放弃尺规,仅用米拉镜完成几何作图。虽然不能画圆,但仅使用前三种操作,我们就能作出所有尺规可作图的点。相反,前三种操作也可以用尺规来完成。因此,用前三种操作可以作图的点就是尺规可作图的点。而第四种操作使我们可以作出尺规无法作图的点。我们来看看原因。

抛物线是到直线(准线)和直线外一点(焦点)距离相等的点的集合。如图 T.33 所示,点 a0e35c8fd798fabc8072421ec3cdf33d.png 到焦点 4bad43a1734897d5dc5c7d4cca9c1b39.png 和准线 bed12ef50d59d363effcea086f137a6d.png 的距离相等。事实上,抛物线在 59f30f91d49c82fc81c85002b2143458.png 点的切线 9275c76c4bb099e77d4ff8ea8c84423b.png 平分 a7e4ec15be65a87a9a1c78d7270ce4ca.pngf23b761003eec31b16139d4c46ffd187.png 是 9792576840ab5e0bd5ce43798570c9bb.png 关于 9fa3759d09f50c1841bf63af01b81f1d.png 的反射。换言之,如果我们把米拉镜放在 a650b33b034b869ab28e2f52c063a0d6.png 上,它会把 fe8111fe32b2eba378e10b1975837ec2.png 反射到 b936b21a6ff7dd59a0612ed72b159ddc.png。相反,如果我们把米拉镜放在使 dada5e4b82a901f328b2bbd0eb4d29f1.png 的反射落在 a407572d8f05ccd0865e0721024857b3.png 的位置上,那么米拉镜就与抛物线相切。

a6e7158dd8fa66eefcc7d0f936ca50a3.jpeg

图 T.33 如果我们把点 08a429eb3bcd09b8668841e36c02584c.png 反射到 44244168de014fef7ea4d880ff5dc4f9.png 上,那么米拉镜就与焦点为 2ac79b7690fc070c361e97d19e55420b.png、准线为 ce183bbeba03020f639f30881589b43c.png 的抛物线相切

米拉镜的第四种操作要求我们把两个点反射到两条线上。这一过程相当于找一条与两条抛物线(一条抛物线焦点为 a5e520c5e792758857225dd0437faa04.png、准线为 daf5bda0e607ad573ac3a8d65e980234.png,另一条抛物线焦点为 72658d034e6a09fa2da0b1c5de2f0b1d.png、准线为 a91a476fc6fabefa9b33fabb94079766.png)相切的直线 dfc25347276216fc9972381975745729.png。正是这些隐藏的抛物线让我们脱离了尺规作图的范畴,并得以解决三等分任意角、倍立方、作正七边形或正九边形以及更多问题。

在米拉镜被发明之前的 1963 年,A. E. 霍克斯坦发明了一种带有镜子的仪器。用这种仪器配合尺规就可三等分角。该仪器由一把长度为 e1b056c8c50f215d71176b1222ff510f.png 的普通直尺被安装到一片半透明玻璃上制作而成。玻璃与直尺垂直,而且其反射面刚好平分直尺(图 T.34)。

b824b46468ac711e9d65d2775f75d940.jpeg

图 T.34 我们可以用一个装有直尺的半透明玻璃三等分角

该工具的用法如下。假设我们想三等分 48053a6eb93959ad56dcd4d25c5bf22f.png。简单起见,假设 cb897f9f559520f86aa69682a9a40769.png。用直尺延长 8dd9b19fc35b8031d58a264a28db4618.png,用圆规以 5a287c3f6ea08a1c7b8fa7b3fb966c65.png 为圆心、以 100e89069543c80b25594a538c138fa0.png 为半径作圆,交 645f9b613b4f9356796656511f9511fe.png 于 48e2d7b236ec0ac8bf0777f6bdd7395c.png。接下来让直尺的一个角与 8560e462d2a9486c2781e2073a78776f.png 重合,让另一端的角落在圆上。我们可以在玻璃中看到 e3d0ffb5f56d0d973827b50060c43f54.png 的反射。调整直尺的位置,直到该反射经过 e9f0e2c36428624feef7943b7856f69e.png。然后我们沿直尺画出 ec82cad70355b8ea2749341687760d36.png,则 348a2e7d2f51a5497adfedde171785ca.png 三等分角 d3362c9573530832b311109a3b9da4c2.png

我们来证明这一结果。首先我们注意到,因为 7e0c109a8239721b09f51a14fcd1902b.png,三角形 f8efe6aac09b9167033518691e4b2106.png 和 0bdb104e874088404eb6e159b3a2c88d.png 全等,所以 f5af04cf7e6ae7cc3362e8912d8846ab.png 是等腰三角形(图 T.35)。此外,因为 cc6925b477385a8584a744ffa04f7b4b.png,所以三角形 32f909af158f85eb2694418b718d4bb1.png 也是等腰三角形,并且和 4f5248260d13c17270d7080dea66c08d.png 相似。因此 3dfdc8a64ac1bdb58252ee16c22ec21d.png。我们把这三个角记作 0271124506e926eb135097b59921cdea.png。因为 32b9b8ea471b2722e6102996c75c4936.png 是三角形 7b1886ab97856fd92b73898759b77176.png 的外角,所以我们有 outside_default.png。因此 outside_default.png

outside_default.png

图 T.35 线段 outside_default.png 三等分 outside_default.png

01

outside_default.png

《不可能的几何挑战:数学求索两千年》

作者:大卫•S. 里奇森

译者:姜喆

数学历史新角度,作者旁征博引,发掘了之前数学书未曾留意的历史细节。

本书以数学史上四大著名的“古典问题”——化圆为方、倍立方、作正多边形、三等分角为基础,展现了两千多年来,数学家们为解决这些问题而留下的令人拍案叫绝的思想与成就。

02

outside_default.png

《微积分溯源:伟大思想的历程》

作者:戴维·M. 布雷苏

译者:陈见柯 林开亮 叶卢庆

从古希腊、古埃及、古印度、中国和欧洲等地的微积分思想,到牛顿、莱布尼茨、伯努利兄弟、黎曼等伟大数学家的辉煌成就,看一看微积分这座“数学宝藏”是如何被塑造成今天的模样的。

03

outside_default.png

《贝叶斯的博弈:数学、思维与人工智能》

作者:黄黎原

译者:方弦

法国数学类科普书、大学数学参考及教材类图书畅销书目,在机器学习、人工智能、逻辑学和哲学等众多领域中,探索贝叶斯定理蕴藏的智慧与哲理。

贝叶斯定理一旦与算法相结合,就不再是一套枯燥的数学理论或认识论,而变成了应用广泛的知识宝库,催生了众多现代数学定理,以及令人称道的实践成果。

04

outside_default.png

《数学的雨伞下》

作者:[法] 米卡埃尔•洛奈(Mickaël Launay)

译者:欧瑜

惊讶!是思考的起点;

数学,是理解世界本质与万物关联的工具!

以数学为起点,以思考为快乐!

法国数学学会“达朗贝尔奖”得主科普名作。

数学,是理解世界本质与万物关联的工具,它能制造两个指南针:一个叫“实用”,一个叫“优雅”。不懂得数学的意义,就无法真正学习和理解数学。

科学家为什么那么聪明?因为他们有非凡的思考方法。

以数学为工具,以思考为快乐;培养自己的思考力、观察力,成为真正的思考者。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值