每一年的3月14日是国际数学日The International Day of Mathematics (IDM),是因数学中最重要的常数之一圆周率π≈3.14而设的国际性节日。国际数学日(国际数学节)项目由IMU国际数学联盟牵头,并得到世界各地众多国际组织和区域组织的支持。UNESCO联合国教科文组织在 2019年11月26日大会第四十届会议上宣布了这一公约。国际数学日第一次庆祝活动于2020年3月14日举行。
众所周知,圆周率自诞生伊始,便与人类“纠缠”了近4000年。而π,在希腊字母中排行第16位,是希腊语περιφρεια(边界、圆周之意)的首字母。尽管在四大古文明里早就有它的身影,但是,π真正作为一个通用常数被重新定义,也不过是近300年的事情。
圆周率
不管圆有多大,它的周长与直径的比值总是一个固定的数。我们就把这个数叫做圆周率,用希腊字母来表示。人们很早就认识到了圆周率的存在,对圆周率的研究甚至可以追溯到公元前。从那以后,人类对圆周率的探索就从未停止过。几千年过去了,人类对圆周率的了解越来越多,但却一直被圆周率是否有理的问题所困扰。直到1761年,德国数学家朗伯(Lambert)才证明了
是无理数。
是数学中最基本、最重要、最神奇的常数,它常常出现在一些与几何毫无关系的场合中。例如,全体正整数的平方的倒数和就会收敛到一个与
有关的数值:
而任意取出两个正整数,则它们互质(最大公约数为1)的概率为,恰好是上面这个算式答案的倒数。
“图灵新知”是图灵文化旗下的科普图书出版方向品牌,致力于站在巨人的肩上,出版传播优质科普与数学好书。
“图灵新知”书单
01
《数学的雨伞下》
作者:[法] 米卡埃尔•洛奈(Mickaël Launay)
译者:欧瑜
惊讶!是思考的起点;
数学,是理解世界本质与万物关联的工具!
以数学为起点,以思考为快乐!
法国数学学会“达朗贝尔奖”得主科普名作。
数学,是理解世界本质与万物关联的工具,它能制造两个指南针:一个叫“实用”,一个叫“优雅”。不懂得数学的意义,就无法真正学习和理解数学。
科学家为什么那么聪明?因为他们有非凡的思考方法。
以数学为工具,以思考为快乐;培养自己的思考力、观察力,成为真正的思考者。
02
《证明的故事:从勾股定理到现代数学》
作者:[澳] 约翰·史迪威(John Stillwell)
译者:程晓亮 张浩
数学史泰斗、旧金山大学荣休教授,“肖夫内奖”获得者,当今世界最有影响力的数学家之一约翰·史迪威全新力作!
证明是数学思想中十分重要且极具开拓性的特征之一。没有证明,就没有真正的数学!
本书从古希腊几何学时代讲起,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事,讲述了证明的演变及其在数学中的重要作用和启发意义。我们将看到欧几里得、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。
本书不是教材,而是在讲数学的历史,更是在讲数学思想的演变。
3月15日(周六)晚上19:00,本书译者程晓亮做客图灵社区直播间,和大家聊聊【数学美育鉴赏之“证明的故事”】,预约直播不错过~
03
《可变思考:数学与创造性思维》
作者:[日]广中平祐
译者:佟凡
日本数学大家、菲尔兹奖得主广中平祐著作!稻盛和夫力荐,呈现数学家观察事物的独特视角与思考方式。
1.稻盛和夫力荐,日本累计销售10万册!
2.菲尔兹奖得主理解“复杂”与“变化”的巧妙视角,用数学的智慧探索创造力的本质
3.讲述创造性思维的本质与根源传授学习、研究、教育中的创造性思维的模式与方法
04
《微积分溯源:伟大思想的历程》
作者:戴维·M. 布雷苏
译者:陈见柯 林开亮 叶卢庆
从古希腊、古埃及、古印度、中国和欧洲等地的微积分思想,到牛顿、莱布尼茨、伯努利兄弟、黎曼等伟大数学家的辉煌成就,看一看微积分这座“数学宝藏”是如何被塑造成今天的模样的。
05
《数学与生活)(1-4)》
远山启 | 著
吕砚山,李诵雪,马杰,莫德举 | 译
日本数学教育议会创立者远山启力作,通俗讲解消除"应试数学"带来给初中数学高中数学带来的恐惧感,了解什么是数学,充分感受数学之美,培养理科逻辑思维。
《数学与生活》为日本数学教育改革之作,旨在还原被考试扭曲的数学,为读者呈现数学的真正容颜,消除应试教学模式带来的数学恐惧感。
06
《简单微积分:学校未教过的超简易》
作者:神永正博
译者:李慧慧
仅用“阅读”就能理解微积分原理,无须背诵公式、烦琐计算,传授日本微积分入门的“巧妙思路”。
书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。
07
《普林斯顿微积分读本(修订版)》
《普林斯顿数学分析读本》
《普林斯顿概率论读本》
作者:[美] 史蒂文·J. 米勒、拉菲·格林贝格、史蒂文·J. 米勒
译者:李馨
风靡美国普林斯顿大学的数学课程读本,教你怎样在数学考试中获得高分,用大量例子和代码全面探讨数学问题提供课程视频和讲义。被誉为“普林斯顿读本”三剑客。
08
《数学女孩》(1-6)
作者:结城浩
译者:朱一飞等
日本数学会强力推荐,内容由浅入深,绝赞的数学科普书,在动人的故事中走近数学,在青春的浪漫中理解数学。
《数学女孩》系列以小说的形式展开,从基础数学到费马大定理、哥德尔不完备定理、随机算法、伽罗瓦理论、庞加莱猜想,重点描述一群年轻人探寻数学之美的过程。
09
《陶哲轩教你学数学》
作者:陶哲轩
译者:李馨
菲尔兹奖得主陶哲轩数学思维大解析,通过奥数竞赛习题解答,带你领悟数学之美。
本书是国际知名数学家陶哲轩15岁时的著作,从青少年的角度分析数学问题,主要是数学竞赛等智力谜题,用学生的语言解释思考过程,完整展现了少年陶哲轩的解题思路。
10
《高等数学精选750题》(上下册)
《线性代数精选450题》
宋浩 | 著
《高等数学(上册)》本书针对大学高等数学上学期的课程内容 — — 函数与极限、导数与积分、微分中值定理与导数应用、不定积分、定积分以及应用、微分方程 — — 精心设计了750道经典与创新题目,并给出了相应的解题思路。
《高等数学(下册)》全书由广受学生欢迎的数学教师宋浩编写,针对高等数学中的向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分、曲面积分以及无穷级数这6个重要板块,给出了750道经典与创新题目解题思路。
《线性代数精选450题》本书针对大学线性代数的课程内容—行列式、矩阵、向量、线性方程组、特征值与特征向量、二次型、向量空间—精心设计了450道经典与创新题目。
适读人群 :本书适合于:1. 大一同学,学习《高等数学》和《微积分》的同步参考,期末考试复习;2. 专升本同学,复习《高等数学》的练习册;3. 考研数学(数学一、数学二、数学三)的第一轮教材梳理;4. 考研数学(396经济类联考)复习。
特别推荐
《数学之美》
吴军著
吴军博士的《数学之美》自问世以来屡次重版,十多年来持续引领数学科普阅读热潮。今年,我们延续了原书的经典内容,重磅推出具有国际数学日邮戳纪念性意义的首日封配套定制版图书《数学之美》。书中不仅承载着吴军博士对数学的深刻洞察,更附赠中国邮政官方发行的首日封,每枚邮票对应一个定制版的信封,4种首日封向购买该定制版的读者随机发货。这套邮票首日封的设计,正是对数学之美的具象致敬:
● π(圆周率):最美数字,一个无限不循环的小数,却定义了圆与宇宙的永恒;
● 勾股定理(毕达哥拉斯定理):直角三角形三边关系的朴素表达,成为建筑、航海甚至现代通信的基石;
● 欧拉公式:e^iπ +1=0,指数、圆周率、复数运算和最简单数字,看似毫无关联的五个数却在这条公式中完美融合,被誉“宇宙第一数学公式”;
● 莫比乌斯带:最美拓扑图形,一张纸条扭转180度后粘合,便形成一个“永无止境”的环,打破空间维度的桎梏,启发了拓扑学与科幻想象。
“原力”是湖南科学技术出版社旗下的科普图书品牌,关注科学与新知,满足世界的好奇心。
“原力”书单
01
《数学分析应该这样学》
【英】劳拉·阿尔柯克著
数学分析涵盖高等数学A、高等微积分、实分析,是大多数理科类本科专业必修的基础科目。
《数学分析应该这样学》分为两部分,第一部分讲解什么是高等数学,以及高等数学如何从定义和公理出发,以证明为手段搭建一致的数学理论,同时为同学们制定了最优的高等数学学习策略,并告诉同学们如何在心理上应对初学阶段难免的挫折感;第二阶段以深入浅出的方式讲解高等数学中的关键核心概念,包括序列、极限、连续、可微、可积和实数等,为学生的后续学习打下坚实的基础。
02
《烧掉数学书》
【美】杰森·威尔克斯著
《烧掉数学书》是一本全新概念的数学科普。这本书的一大特点是抛开传统晦涩的数学符号和讲述方式,另起炉灶,从零开始,用年轻人易于接受的语言阐释高深的数学知识和概念。
这本书打破了数学教育界认为在讲授微积分之前必须花大量时间和精力学习微积分的严格化基础的惯例,从理解微积分本身的用途和方法着手,反过来再提出微积分基础严格化的问题,从而顺理成章地引出极限和逼近等概念。这种方法更符合人们的学习和认知规律,让人能自然而然地接受和理解这些抽象的概念和技巧的源流和必要性,从而为深入的学习打下好的基础.
03
《离散的世界》
陈卓 著
离散的对象无处不在,无所不包,其中最神奇的当属“0”和“1”这两个离散量,作为一个现代人,哪天能够离开“比特”呢?这两个离散量是构建我们现在赖以生存的网络世界的主要元素。
离散数学研究离散量所具备的“离散性”正是计算机在处理现实世界时所需要的,所以离散数学与计算机领域有一种天然的紧密联系。本书讲述了与离散数学相关的历史知识、数学概念以及这些数学概念在计算机领域的应用。通过阅读本书,你会了解到离散数学在生活中的作用,体会这个世界的另一层意义。
04
《对称》
【美】赫尔曼·外尔 著
《对称》是讨论数学、科学、自然界和艺术中的对称性的一部经典著作。从对称代表了比例的和谐这一理念出发,作者逐步深入研究了对称性更多抽象的种类和表现方式,比如左右对称、平移对称、旋转对称、装饰对称性和晶体对称性。作者借助大量的插图,详细讨论了这些特殊表现形式下所暗藏的一般数学概念。
书中还详细解析了对称性的定义、分类及其在数学证明和几何图形分析中的重要作用。点对称、轴对称和中心对称等不同类型的对称形式被逐一介绍,并配以具体的图形和实例,使读者能够直观地理解对称性的内涵和应用。
05
《数学的力量》
【美】詹姆斯·斯特恩
数学作为重要的基础学科,是我们面向未来的重要工具和能力。但问题是,我们如何摆脱数学学习的枯燥甚至是畏难情绪,提升数学教育的质量,真正地享受数学,热爱数学,并愿意钻研数学。
《数学的力量》以诚挚的语言告诉我们,学好数学实际上是人类的天性,只是很多人都被埋没了。数学中蕴含着意义、美、探索、自由、真理、奋斗等各种优秀的品格,和我们个体的内在追求是高度契合的。我们每个人实际上都可以发现数学之美,感受数学之乐,重要的是通过正确的方式去唤醒它们。
06
《巧合》
【美】约瑟夫·马祖尔
如果某件事有可能发生,不管可能性有多小,它必然会在某个时间发生”。
这本书实际上是讲统计学的书,去科学的解释某些偶然的巧合(被我们认为冥冥之中自有安排与定数的事件)。
我们的知识经验塑造了我们的期望,而概率论的核心就是期望值,大自然的随机性秘密,包括保险、气象、占星术、易经和赌博等等都能通过计算期望值或多或少的得到预测,期望值的预期形成了我们的惊喜,这就是巧合的重要特征。
07
《数字乾坤》
【美】马克·钱伯兰
1、2、3...9,没有什么比这更简单也更迷人的数字,一旦你掌握了数字,便能知晓世界多数的秘密。
作将数字从1到9进行了详尽的解释,例如,要洗几次扑克牌才能洗匀?为什么所有的井盖都是圆的?妈妈如何能分辨出孩子的声音?你知道怎样识别伪造的数据吗?所有人之间真的只隔着6个人吗?只用4种颜色怎样确保地图上任何相邻区域都不会颜色一样?
在《数字乾坤》中,马克·钱伯兰将带领读者领略数字的迷人之处,了解它们的历史、应用以及与数论、几何、混沌、数值分析和数学物理等多个数学领域的关联。
08
《密码的数学》
【美】约书亚·霍尔登
从古至今,密码激发了设计者的智慧和破解者的聪明才智。密码学,也就是发送秘密信息的学问,背后的数学是怎样的?
约书亚•霍尔登同时聚焦于编码和解码,通过解读历史上最简单又最为知名的凯撒密码,阐述了大部分为人熟知的古代和现代密码背后关键的数学理念。本书还探讨了多字母替换密码、换位密码(其中一种是由斯巴达人发明的)、序列密码、涉及指数运算的密码以及公钥密码等。
《密码的数学》通过大量历史趣闻和真实案例,揭示了在信息编码的学问中,数学是怎样随风潜入夜、润物细无声的。
09
《欧几里得之窗》
【英】列纳德·蒙洛迪诺
《欧几里得之窗》是一本引人入胜的几何学通俗读物,借由欧几里得、笛卡儿、高斯、爱因斯坦与威腾等的故事,来说明人类理解自身所处时空的五次革命性几何学发展历程。
欧几里得的《几何原本》开启了人类探究几何学的一扇窗,并引进了抽象化逻辑思维证明。这是几何学第一次革命性的发展。
10
《证明与布丁》
【美】吉姆·亨勒
不懂美食的数学家不是好的艺术家!
在这本书中,你不仅可以学习到数学原理,甚至还能增长厨艺,通过一道道菜肴的制作,读者可以感受到数学中的逻辑、推理和证明过程,从而发现两者之间的紧密联系。
这是一道为美食家准备的可口的流行数学菜肴,《证明与布丁》这本书将数学解题与美食的愉悦之感结合在一起,充满智慧,又很可口,它会告诉你数学世界里的生活与厨房生活有哪些令人快乐的相似之处。