参考网友的博文:https://blog.csdn.net/w20810/article/details/49030961
发现有两种实现办法,如下:
#include <math.h>
#include <time.h>
#include <iostream>
using namespace std;
double sqrt1(double x)
{
double k=x;
while(k*k-x>1e-9)
k=0.5*(k+x/k);
return k;
}
double sqrt2(double n)
{
double err = 1e-9;
double t = n;
while (fabs(t - n/t) > err*t)
t = (n/t + t)/2;
return t;
}
int main()
{
printf("enter the val of sqrt:\n");
clock_t start,finish;
double duration;
start = clock();
printf("sqrt(c)=%.91f\n",sqrt1(11316));
finish = clock();
duration = (double)(finish-start)/CLOCKS_PER_SEC;
printf("duration = %.91f\n",duration);
start = clock();
printf("sqrt(c)=%.91f\n",sqrt2(11316));
finish = clock();
duration = (double)(finish-start)/CLOCKS_PER_SEC;
printf("duration = %.91f\n",duration);
system("pause");
return 0;
}
两个办法,我实验两种方法分别计算的是11316和1316的平方根,前者是sqrt2使用时间较短,后缀是sqrt1使用时间较短。两者的计算值差别不大。
表明,在同一精度同一算法下,两种实现方式各有优劣。