Prompt Engineering Notes

LLM output configuration

Output length

仅仅起到截断作用,不会让模型的输出更简洁。

Sampling controls

LLM并不预测下一个token,而是计算下一个token可能是什么的概率。控制这种采样的参数主要有下面几种。

Temperature

temperature控制token选择的随机度。当其设为0时,永远选择下一个概率最大的token;随着它的升高,所有token更趋向于有相等的概率被选择。计算原理:具有温度系数(Temperature)的Softmax函数

Top-K & Top-P

Top-K采样只保留概率最大的K个token;而Top-P采样选择一个最小的累计概率≥P的token集合。和温度相比,Top-K和Top-P采样更加硬性地筛选掉那些概率较小的token。

联合使用

温度、Top-K和Top-P是可以一起使用的。有几个极端情况:

  1. 温度设为0,Top-K和Top-P都失去意义,使用贪心策略选择概率最大的token;而温度设的很高(超过1,甚至两位数)时,温度就失去意义,token的概率分布趋近均匀分布
  2. Top-K设为1(或Top-P接近0),温度和Top-P(Top-K)都失去意义,同样会选择概率最大的token;而Top-K设为很高(Top-P设为1)时,所有的token会被考虑在内,Top-K(Top-P)会失去意义
    给与模型更大的自由度,生成的内容之间将会有更小的相关性。

Prompting techniques

General prompting / zero shot

zero-shot提示词指的是提示词中没有示例,是最简单的提示词。

One-shot & few-shot

one-shot和few-shot分别指提示词中包含一个或多个示例。示例中包含edge case可以增强输出对多样输入的鲁棒性。

System, contextual and role prompting

System PromptingContextual PromptingRole Prompting
定义提供全局指令或规则框架提供当前对话或任务的具体细节或背景为AI分配特定角色或身份
优势定义了模型应该做什么的全局观帮助模型理解询问背后的细微差异帮助模型生成与角色知识行为一致的响应
主要目的初始化AI行为准则,如让模型生成JSON格式的输出;增加响应的安全性提供直接具体的信息来动态引导回应为模型增加特异性和个性

Step-back prompting

Step-back prompting指的是首先提示LLM考虑与当前具体任务相关的通用问题,然后将考虑的答案放在具体任务的输入中,从而使LLM激活背景知识和推理过程。原论文解读:后退提示Step-Back Prompting:AI应对复杂问题的新策略

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值