TOC
LLM output configuration
Output length
仅仅起到截断作用,不会让模型的输出更简洁。
Sampling controls
LLM并不预测下一个token,而是计算下一个token可能是什么的概率。控制这种采样的参数主要有下面几种。
Temperature
temperature控制token选择的随机度。当其设为0时,永远选择下一个概率最大的token;随着它的升高,所有token更趋向于有相等的概率被选择。计算原理:具有温度系数(Temperature)的Softmax函数
Top-K & Top-P
Top-K采样只保留概率最大的K个token;而Top-P采样选择一个最小的累计概率≥P的token集合。和温度相比,Top-K和Top-P采样更加硬性地筛选掉那些概率较小的token。
联合使用
温度、Top-K和Top-P是可以一起使用的。有几个极端情况:
- 温度设为0,Top-K和Top-P都失去意义,使用贪心策略选择概率最大的token;而温度设的很高(超过1,甚至两位数)时,温度就失去意义,token的概率分布趋近均匀分布
- Top-K设为1(或Top-P接近0),温度和Top-P(Top-K)都失去意义,同样会选择概率最大的token;而Top-K设为很高(Top-P设为1)时,所有的token会被考虑在内,Top-K(Top-P)会失去意义
给与模型更大的自由度,生成的内容之间将会有更小的相关性。
Prompting techniques
General prompting / zero shot
zero-shot提示词指的是提示词中没有示例,是最简单的提示词。
One-shot & few-shot
one-shot和few-shot分别指提示词中包含一个或多个示例。示例中包含edge case可以增强输出对多样输入的鲁棒性。
System, contextual and role prompting
System Prompting | Contextual Prompting | Role Prompting | |
---|---|---|---|
定义 | 提供全局指令或规则框架 | 提供当前对话或任务的具体细节或背景 | 为AI分配特定角色或身份 |
优势 | 定义了模型应该做什么的全局观 | 帮助模型理解询问背后的细微差异 | 帮助模型生成与角色知识行为一致的响应 |
主要目的 | 初始化AI行为准则,如让模型生成JSON格式的输出;增加响应的安全性 | 提供直接具体的信息来动态引导回应 | 为模型增加特异性和个性 |
Step-back prompting
Step-back prompting指的是首先提示LLM考虑与当前具体任务相关的通用问题,然后将考虑的答案放在具体任务的输入中,从而使LLM激活背景知识和推理过程。原论文解读:后退提示Step-Back Prompting:AI应对复杂问题的新策略