【矩阵论总结(4)】特征值、特征向量、特征矩阵、特征多项式

1、设T是数域K上的线性空间V^{n}的线性变换,且对K中某一数\lambda_{0},存在非零向量x\epsilon V^{n},使得

      Tx=\lambda_{0}x

      成立,则称\lambda _{0}为T的特征值,x为T的属于\lambda _{0}的特征向量

2、特征矩阵\lambda I-A

3、特征多项式为A的特征矩阵的行列式\det\letf(\lambda I-A)

4、复数域上n*n矩阵A的n个特征值的几何意义是复平面上的n个点

5、特征值的估计

特征值和特征向量

  • 特征值(Eigenvalue): 给定一个方阵 A,如果存在一个非零向量 v 和一个标量 λ,使得 Av=λv,那么 λ 称为矩阵 A 的一个特征值。
  • 特征向量(Eigenvector): 对应于特征值 λ 的非零向量 v 称为矩阵 A 的一个特征向量。特征向量表示了矩阵 A 在某个方向上作用效果仅为伸缩变换。

特征矩阵

  • 特征矩阵(Eigenvector matrix): 如果将一个矩阵 A 的所有特征向量作为列向量排列,构成的矩阵 V 称为特征矩阵。在某些情况下,特征矩阵 V 可以用于将矩阵 A 对角化,即 V^{-1}AV=D,其中 D 是一个对角矩阵,其对角线元素是 A 的特征值。

特征多项式

  • 特征多项式(Characteristic polynomial): 矩阵 A 的特征多项式是一个以特征值为变量的多项式,定义为 det(A−λI),其中 det⁡det 表示行列式,I 是单位矩阵,λ 是一个标量。矩阵 A 的特征值是特征多项式的根。

关系和应用

  • 特征值和特征向量揭示了线性变换在特定方向上的伸缩特性。
  • 特征矩阵和特征值可以用于分析矩阵的对角化和线性变换的简化表示。
  • 特征多项式提供了一种计算特征值的方法,是理解和应用特征值、特征向量的基础。
  • 这些概念在求解微分方程、动态系统分析、物理学中的量子力学、经济学中的模型分析等方面有着重要的应用。

更新中。。。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值