写2.0版本是因为后来再次复盘的时候我觉得1.0版本比较杂乱,没有一个比较明确的分析目标和分析路线,从头在看好像只是在进行一个简单的数据探索,有种东一榔锤西一锄头的感觉,于是2.0版本决定聚焦在用户的角度,利用漏斗模型去探索用户各阶段的转化率,以及挖掘背后的原因,感觉写完这一版本确实更通畅了一点。
目录
一、项目背景
O2O行业关联数亿消费者,各类APP每天记录了超过百亿条用户行为和位置记录,因而成为大数据科研和商业化运营的最佳结合点之一。以优惠券盘活老用户或吸引新客户进店消费是O2O的一种重要营销方式。然而随机投放的优惠券对多数用户造成无意义的干扰。对商家而言,滥发的优惠券可能降低品牌声誉,同时难以估算营销成本。个性化投放是提高优惠券核销率的重要技术,它能让具有一定偏好的消费者得到真正的实惠,同时赋予商家更强的营销能力。
二、分析目的
使用漏斗模型对用户进行分析,对各环节用户转化率的情况进行收集对比,从中发现问题并对问题发生的原因进行分析,然后尝试给出业务建议。继而利用RFM模型进行用户价值分析,力图对用户进行更高效的精细化运营,促进优惠券核销以及销售增长。
三、数据集描述
数据说明:用户在2016年1月1日至2016年6月30日之间真实线下消费行为数据
分析工具:SQL、Tableau、Excel
数据来源:https://tianchi.aliyun.com/competition/entrance/231593/information
数据字段:
四、分析内容
4.1 明确问题
漏斗模型各环节的数据分别是:
用户总数>>领券用户数>>领券消费用户数>>复购用户数
使用SQL语言统计各环节的用户数以及相对上层的转化率,并利用Tableau绘制漏斗模型:
with t1 as # 所有用户
(select
count(distinct User_id) as all_users
from offline_train),
t2 as( # 领券用户
select
count(distinct User_id) as getcoupons_users
from offline_train
where Date_received is not null),
a1 as(# 首次用券核销用户
select
User_id,
min(Date) as first_date
from offline_train
where Date_received is not null and Date is not null
group by User_id),
a2 as( # 用券后复购用户
select
count(distinct User_id) as second_user
from a1
inner join offline_train using(User_id)
where offline_train.Date>first_date
)
select
(select all_users from t1) as all_users,
(select getcoupons_users from t2) as getcoupons_users,
count(distinct User_id) as usecoupons_users,
(select second_user from a2) as second_users,
(select getcoupons_users from t2)/(select all_users from t1) as get_rate,
count(distinct User_id)/(select all_users from t1) as use_rate,
(select second_user from a2)/count(distinct User_id) as second_rate
from offline_train
where Date_received is not null and Date is not null;
输出结果:
从上述漏斗模型中我主要发现三个现象:
- 第一:用户领券转化率约为95%,数据表现非常好
- 第二:用户核销转化率仅为9%,转化率比较低,问题比较严重
- 第三:用户领券后复购转化率为60%,效果比较理想
4.2 确定分析方法
- 现象一:用户领券转化率约为95%,数据表现很好,说明优惠券覆盖率很高,但仍有提升空间,优先级暂列为不重要不紧急1星。可以根据该运营策略不断总结并从中寻找进一步提升。
- 现象二:用户核销转化率仅9%,问题比较严重,应该优化提升优惠券核销策略,优先级列为重要且紧急5星。具体分析方法采用人-货-场进行分析。
- 现象三:用券核销用户复购转化率达到60%,效果较为理想,该部分是用户留存的重要环节,已经有现成成功经验可以复制,优先级列为重要不紧急3星。针对用户行为进行复购分析。
4.3 用户领券转化率分析
对于第一个现象,数据表现很好,优惠券覆盖率很高,但是仍有提升空间,可以根据该运营策略不断总结并从中寻找进一步提升。由于数据字段有限,无法进一步分析,这里简单提一些业务建议:
- 优惠券存在用户主动领券和平台自动发券现象,因此为了提高后续的转化率可以增加用户主动领券的场景,如可以基于搜索或浏览记录实时发放优惠券,让用户快速决策,可以把优惠券链接放在店铺首页,强化促销效果
- 增加积分发券、助力发券、任务发券等形式增加用户沉没成本,提高后续优惠券的核销率