O2O优惠券核销-数据分析1.0

该博客通过分析O2O优惠券的使用数据,发现距离商户500米内的用户核销率最高,优惠券核销率与距离成负相关,同时满减门槛较低的优惠券核销率更高。用户领券次数多的核销率也较高。此外,4月份核销率下降可能是由于满减门槛提高。建议平台在分发优惠券时考虑距离和满减门槛,针对不同用户群体进行精准投放,提高核销率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、项目背景

二、分析目的

三、数据集描述

四、分析思路

五、分析内容

5.1 优惠券维度

5.1.1 距离因素

5.1.2优惠券类型因素

5.1.3 时间因素

5.2 用户维度

5.2.1 不同领券次数、核销率的用户分布情况

5.3 商户维度

5.3.1 不同领券次数、核销率的商户分布情况

六、分析结论

(一)优惠券维度

(二)用户维度

(三)商户维度

七、仪表盘

八、个人感想


一、项目背景

O2O行业关联数亿消费者,各类APP每天记录了超过百亿条用户行为和位置记录,因而成为大数据科研和商业化运营的最佳结合点之一。以优惠券盘活老用户或吸引新客户进店消费是O2O的一种重要营销方式。然而随机投放的优惠券对多数用户造成无意义的干扰。对商家而言,滥发的优惠券可能降低品牌声誉,同时难以估算营销成本。个性化投放是提高优惠券核销率的重要技术,它能让具有一定偏好的消费者得到真正的实惠,同时赋予商家更强的营销能力。

二、分析目的

利用用户在2016年1月1日至2016年6月30日之间真实线下消费行为数据,分析平台优惠券投放效果,并尝试提供合理的建议。

三、数据集描述

分析工具:Python、Tableau、Excel

数据来源:https://tianchi.aliyun.com/competition/entrance/231593/information

数据字段:

四、分析思路

五、分析内容

5.1 优惠券维度

5.1.1 距离因素

距离代表用户和商户的地理距离。O2O具有线上支付,线下消费的特点,线上发放消除了O2O优惠券领取阶段的地理距离的壁垒,但是消费者与商户的线下距离也可能会对O2O优惠券的使用产生影响。

图中数据发现:1.距离商户500米内的用户领券次数和核销率都是最高,其中核销率为13.46%,远超其他类别数据;2.五公里以上的用户领券次数位居第二,但是核销率最低,仅1.44%;3.优惠券核销率与距离成负关系,距离越大,核销率越小。

总结与建议:地理位置在O2O优惠券的使用中起着重要作用,如果消费者与商家距离较远, 需要付出较高的交通成本才能到达线下商户进行消费, 这将会为优惠券的使用造成障碍。因此在分发优惠券时需要将距离因素考虑在内,优先针对商户500米内的消费者进行发放。

5.1.2优惠券类型因素

注:图中将优惠券按照领取数量从左至右排列,即线条越粗,领取数量越多

图中数据发现:领取前三的优惠券分别为30:5、100:10、200:20;核销率前三的优惠券分别为150:5、5:1、10:1;各类优惠券核销率与平均距离普遍呈现负相关现象,大量优惠券受平均距离的影响核销率较低,如100:30,200:50,200:30等。这里选取优惠券领取总数第三,平均距离适中,但核销率较低的“200:20”优惠券进行单独分析。

经统计,该优惠券合计被领取111046次,使用该优惠券的商户有106个,抽取该优惠券领券总数排名前5的商户,结果如下方所示,可以发现5家商户200:20类型优惠券的核销率分别为1.34%、1.39%、2.07%、0.06%、1.60%,其中3381商户200:20优惠券被领次数高达83660次,次数占比75%,因此3381商户的核销率会较大程度影响200:20优惠券的整体核销率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十二十二呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值