提示词框架介绍和使用场景

框架介绍

CO-STAR 框架

定义

CO-STAR是六个关键要素的缩写,每个字母代表一个特定的部分:

  • Context(上下文) :提供任务的背景信息或环境
    当前任务是为一家科技公司撰写一篇关于人工智能发展趋势的文章/ 需要为一场面向高中生的科普讲座准备内容
  • Objective(目标) :明确任务的具体目标或期望结果
    生成一篇逻辑清晰、通俗易懂的科普文章/ 总结出人工智能领域的三大关键趋势并解释其影响
  • Style(风格) :定义语言表达的风格或语气
    正式且专业的学术风格/ 轻松幽默、适合青少年理解的科普风格
  • Tone(语调) :设定沟通的情感基调
    积极乐观,传递对未来技术的信心/ 中立客观,避免过度夸张的技术描述
  • Audience(受众) :明确内容的目标受众
    面向科技行业的从业者和决策者/ 面向对人工智能感兴趣的普通大众或学生群体
  • Response(响应格式) :规定输出的形式或结构要求
    使用Markdown格式输出,包含标题、段落和项目符号列表/ 附带一个可视化图表示例,并用简短的语言解释数据来源
案例
# CONTEXT #
撰写一篇小红书种草博文,推荐一款最新的护肤产品。该产品主打成分为玻尿酸,适合所有肤质,特别是干性和敏感性肌肤。目标读者是22-30岁的年轻人,他们关注护肤和美容趋势,喜欢尝试新产品[^1^]。

# OBJECTIVE #
- 介绍这款护肤产品的主要特点和优势。
- 通过详细描述使用体验,激发读者的购买欲望[^1^]。

# STYLE #
采用亲切、活泼的风格,融入生活化的语言。小红书博文风格,需要包含诸如“宝子”“姐妹”等词汇,以及丰富的 emoji[^1^]。

# TONE #
友好、热情、激动、开心,像朋友间的推荐[^1^]。

# AUDIENCE #
22-30岁的年轻人,特别是注重护肤和美容的女性读者[^1^]。

# RESPONSE #
博文应包括产品介绍、使用体验、效果描述和推荐理由。如果文中有列表,那么列表的每一项开头都需要有 emoji[^1^]。

CRISPE 框架

定义
  • Capacity and Role(能力与角色) :定义 AI 的能力和角色身份
    资深市场营销专家/ 具备十年经验的数据分析师
  • Insight(洞察/背景信息) :提供任务的相关背景或上下文
    当前任务是为一家科技公司撰写一篇关于人工智能发展趋势的文章/ 需要分析2025年Q1用户行为数据以支持产品优化决策
  • Instruction(指令/任务说明) :明确具体的操作或任务要求
    生成一份包含三大关键趋势的市场分析报告/ 编写智能家居系统API文档,符合OpenAPI 3.0规范
  • Style and Tone(风格与语气) :指定语言表达的风格和情感基调
    正式且专业的学术风格/ 轻松幽默、适合青少年理解的科普风格
  • End-product(最终输出) :规定输出的形式或结构要求
    使用Markdown格式输出,包含标题、段落和项目符号列表/ 附带一个可视化图表示例,并用简短的语言解释数据来源
<think>嗯,用户现在想查找关于高级提示词框架的信息,包括教程、实现方式或示例代码。让我先看看他们之前提到的引用内容有没有相关的部分。引用1里提到了提示词的设计方法,比如详细的信息、指定角色、使用分隔符、提供示例等,还有思维链思维树模型。这可能就是用户需要的高级框架部分。 用户可能需要具体的步骤或者结构化的方法来构建高级提示词。我应该把这些设计方法整理成一个教程式的回答,分点说明,每个点给出具体的建议例子。比如,详细的信息、角色指定、符号使用这些,都是设计提示词的关键点。 另外,用户可能需要示例代码,但高级提示词更多是自然语言的结构,不过可以举一些示例模板,比如角色扮演的模板,或者使用分隔符的示例。引用3提到了LuaFramework框架,但可能提示词无关,暂时忽略。 还需要考虑用户可能的实际应用场景,比如他们可能在开发AI应用,需要优化与大模型的交互,所以需要高效、结构化的提示词设计方法。思维树(TOT)自洽性模型这些高级技术应该详细解释,说明如何分步骤引导模型思考。 最后,生成相关问题的时候,要围绕高级提示词框架的应用、优化、评估等方面提问,帮助用户深入理解。比如如何评估有效性,与普通提示词的区别,常见错误等。</think># 高级提示词框架实现教程 ## 一、核心设计原则 1. **分层递进结构**:构建"角色定义-任务描述-约束条件-输出规范"四层框架 ```python prompt = f""" [角色] 资深机器学习工程师 [任务] 构建图像分类模型 [约束] 使用PyTorch框架,输入尺寸224x224,类别数10 [输出] 包含数据预处理、模型架构、训练策略的完整方案 """ ``` 2. **动态参数注入**:通过占位符实现模板复用 ```python def build_prompt(domain, task): return f"""作为{domain}专家,分步骤分析{task}: 1. 核心要素识别 2. 相关技术选型 3. 实施路线规划 输出要求:Markdown表格对比方案""" ``` ## 二、进阶实现方法 1. **思维树(TOT)模型应用**: ```text [系统指令] 1. 首先生成3个不同的解决方案框架 2. 对每个方案进行可行性评分(1-5分) 3. 选择得分最高的方案进行细化 4. 最终输出包含技术路线图时间估算 ``` 2. **自洽性验证机制**: ```python validation_prompt = """ 请检查以下代码是否符合要求: 1. 变量命名是否遵循PEP8规范 2. 是否有冗余循环结构 3. 异常处理是否完整 输出格式:[问题点] [建议修改方案] """ ``` ## 三、专业领域优化 1. **技术文档生成模板**: ``` [角色] 首席系统架构师 [任务] 设计高并发电商系统 [技术要求] - 每秒处理10万次请求 - 响应时间<200ms - 数据一致性保证 [输出规范] 1. 架构图(Mermaid语法) 2. 技术选型对比表 3. 容灾方案描述 ``` 2. **学术研究提示框架**: $$ \begin{array}{|c|c|} \hline \text{要素} & \text{要求} \\ \hline 研究背景 & 包含近3年文献综述 \\ 方法论 & 对比至少2种实验方案 \\ 数据分析 & 使用SPSS进行ANOVA检验 \\ \hline \end{array} $$ ## 四、效果评估指标 1. **响应完整度**:$$ C = \frac{\text{覆盖要素数}}{\text{总要素数}} \times 100\% $$ 2. **专业度评分**:$$ P = \sum_{i=1}^{n}w_i \cdot s_i $$ 3. **结构合规率**:通过正则表达式验证输出格式 [^1]: 提示词设计原则参考分层递进结构动态参数注入方法 [^2]: 技术文档模板包含架构图规范数据一致性要求 [^3]: 效果评估指标基于要素覆盖率专业度加权计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值