什么是Prompt 工程
提示词(Prompt)是一种指令、疑问或陈述,旨在指导或指示语言模型产生特定的文本回应。提示词是用户与语言模型互动的起始点,它清晰地表达了用户的意图,并且希望模型以有价值和相关的方式作出反应。通过精心构思的Prompt,我们能够指导大型语言模型(LLM)更准确地把握用户的意图,产生更精确、有用的答复。
在与大型模型互动时,由于用户可能缺乏经验或模型之间存在差异,可能会遇到不合适的提示词(Prompt)问题。因此,需要通过提示词工程,让用户能够引导模型的输出,产生相关性高、精确且高质量的文本。这与机器学习的过程相似,需要进行反复的迭代。
让我们以一个教育领域的实际场景为例,设想我们的目标是让模型创作一篇关于现代教育技术的文章。一开始,我们可能只给出一个简单的提示词:“创作一篇关于现代教育技术的文章。” 但模型可能只会提供一些泛泛的信息,缺乏深度或专业性。通过提示词工程的迭代过程,我们会逐步改进提示词。
例如,我们首先可能会尝试明确指定一些关键词:“以在线学习平台为焦点,创作一篇现代教育技术文章。” 这样,模型更有可能产生与在线学习平台相关的深入内容。在评估模型的输出时,我们可能发现某些内容仍然不够精确或不符合我们的期望。因此,在下一步迭代中,我们可以进一步细化提示词:“以在线学习平台为焦点,探讨其在提升教育公平性中的作用,创作一篇深入的教育技术报道。”
通过这种反复的迭代过程,我们不仅让模型更准确地理解我们的需求,也提升了生成内容的相关性和质量。这个案例展示了提示词工程的迭代过程,通过调整指令和任务描述,逐步优化模型的输出,使其更能满足特定场景的需求。
如何编写 Prompt
Prompt 主要构成要素
- 引导语或指示语:告诉模型您希望它执行哪种类型的任务,比如回答问题、提出建议、创作文本等。
- 上下文信息:提供足够的背景信息,以便模型能够更好地理解和处理请求。上下文信息可能包括具体情境、相关数据、历史对话信息等内容。
- 任务描述:明确地描述你期望模型执行的任务。它可以是一个问题、一个命令性语句或者是一个场景描述。
- 输出格式指示:如果您对输出结果有特定的格式要求,应在prompt中说明。比如,您可以指定输出应该是列表形式、一段连贯的文本还是一系列步骤等。
- 限制条件:设置一些约束条件,指导模型避免某些类型的回答或者引导模型产生特定风格的内容。例如,可以限制回答的字数、要求避免使用专业术语等。
- 样例输出:提供一个或多个例子可以帮助LLM理解所期望的输出类型和质量。
- 结束语:如果有必要,可以使用结束语来标示prompt的结束,尤其是在连续的对话或者交互中。
这些要素并不是每个prompt都必须包含的,但根据特定的需求和上下文,合适地结合这些要素可以提高LLM生成的文本质量和相关性。
Prompt 设计方法
①明确的任务指示
a. Prompt应该清晰地定义你希望LLM完成的任务,内容要尽可能清晰、具体,避免出现歧义。
任务指示不明确的prompt | 指示明确的prompt |
---|---|
我想知道如何提高学生的学习成绩。 | 请列出五种有效的学习方法,并解释每种方法如何帮助学生提高学习成绩。 |
给我一些关于课堂管理的建议。 | 请列出五个课堂管理技巧,并详细说明每个技巧如何在实际教学中应用。 |
b. 指定完成任务的步骤:如果有明确的步骤,通过指定完成任务需要的步骤,可以帮助LLM遵循正确的操作流程,从而更精确地生成回应。
无任务完成步骤的prompt | 有任务完成步骤的prompt |
---|---|
写一篇关于如何提高学生学习成绩的文章。 | 为了写一篇关于如何提高学生学习成绩的文章,请遵循以下步骤:1. 定义学习成绩并解释其重要性。2. 列出影响学习成绩的主要因素。3. 讨论不同学习方法的优缺点。4. 提出具体的提高学习成绩的策略和方法。 |
帮我设计一节课的教学计划。 | 为了设计一节课的教学计划,请按照以下步骤:1. 确定课程目标和学习目标。2. 选择合适的教学材料和资源。3. 制定详细的教学流程和时间安排。4. 设计评估和反馈机制。5. 准备补充活动和作业。请根据这些步骤提供一个完整的教学计划。 |
②提供充分的上下文信息
a. 提供背景信息或具体情境,帮助LLM更好地理解任务。
无具体情景 | 有具体情景 |
---|---|
请阐述量子物理的基本原理及其在解释微观粒子行为中的核心作用,并举例说明量子力学中体现其非经典性的奇特现象。 | 在高年级物理课程中,学生们正在探索微观世界的行为规律。现在ÿ |