深度学习备忘

玩deep learning快一年了,用过keras,后来因为pytorch的代码多而且易懂,又用了pytorch,走了很多弯路,总结如下,供后来人参考。

陆陆续续看了很多内容。

keras,pytorch ,pytorch_lightning,paperwithcode,catalyst,chika,tqdm,torchsummary,torchtoolboxs,

monai,

mnist,cifar10,msd,kaggle,google colab

想要用tpu的同学,貌似用torch还比较难实现,虽然有例子,但环境符合要求还比较难。

先来做mnist实验吧。

实验过程略。。。

用pytorch得重复得写train step

用了lightning后还是得重复的写train step

keras不用写train step

用pytorch的时候,常常会对train step进行一些修改。也常在train的时候出错。现在想想对train step进行修改,无非是数据格式不对。偶尔也有sam等二次优化器,会用到train step阶段的修改。

还有transform和dataloader,pytorch

keras已经集成在tensorflow中。from tensorflow import keras

现成的东西pytorch多很多。

网络结构修改这块,pytorch确实很方便。

colab的cpu性能一般。tpu的最大问题不像cpu到gpu可以无缝切换。要改动的地方还是挺多的。而且有些功能对tpu的支持不好。所以暂时还是放弃tpu吧。除非编程能力特别强。

要平衡cpu和gpu的算力,调整batch_size,大的batch_size 稍微降低正确率。

数据增强不能太离谱,比如随机旋转5度,可能比随机旋转15度,要好。

如果不能拟合,不妨调整学习率和网络模型大小,

提高泛化能力,先考虑batch_size ,数据增强,再考虑网络结构,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值