K-均值方法,有时也叫劳埃德方法或 Lioyd-Forgy 方法。
K-均值聚类的核心思想是 为指定划分数目的最佳划分。
对于 n 个观测,每个观测是 m 维的实数向量,现在需要找到 k 个聚类 (其中 k <= n,即 n 个子集),使得每个类别分组内的方差最小化。
- K-均值聚类的基本步骤如下:
1.随机选取 k 个真实/或虚拟的数据点作为初始质心(即 选择 k 个样品作为初始凝聚点,或者将所有样品分成 k 个初始类,然后将这 k 个类的重心(均值)作为初始凝聚点)。初始质心的选择对聚类结果具有重要影响,因此如何科学选择这些初始质心很重要,一般选择彼此尽可能远的若干样本。
2.分配类别阶段:对所有的样品逐个归类,将每个样品归入凝聚点离这个样品最近的那个类(通常采用欧氏距离)。例如:计算第一个样品分别到第 k 个类(均值)的欧式距离,将第一个样品归到欧氏距离小的那一个类,如果第一个样品在归类之前就已经在这个类当中,就不需要重新分配(移动)。
3.更新质心阶段:通过第2步的归类步骤,有一个新的样品归入了那个类,所以要重新计算这 k 个类别的均值,这 k 类的凝聚点更新为这一类目前的均值,直至所有样品都归了类。例如:计算第二个样品到新的 k 个类的均值的距离,将第二个样品归类到距离小的那个类中去。
4.重复步骤2和步骤3,直至所有的样品都不能再分配为止。