基于决策的黑箱攻击——Boundary Attack

一、引言

基于决策的黑箱攻击是对抗攻击的一大类,优点是不需要目标模型的任何信息,只需要知道目标模型对于给定输入样本的决策结果。本文主要介绍基于决策的黑箱攻击的开山之作——Boundary Attack,论文为:

Brendel W A R J. Decision-based adversarial attacks: reliable attacks against black-box machine learning models. arXiv preprint arXiv:1712.04248, 2017.

二、算法介绍

图一

图1 算法的主要流程

图1显示了Boundary Attack生成对抗样本的主要流程。其中, o o o表示原始样本(图片), η k \eta_k ηk表示第 k k k次迭代中生成的随机扰动,并且服从分布 P ( o ^ k − 1 ) P(\hat o^{k-1}) P(o^k1)。该算法最开始会生成一个初始的对抗样本 o ^ 0 \hat o^{0} o^0,该样本服从均匀分布且目标模型对其分类错误。由于 o ^ 0 \hat o^{0} o^0是随机生成的,与原始样本 o o o的差别很大,不是一个理想的对抗样本,因此需要进行一步步的迭代使 o ^ 0 \hat o^{0} o^0 o o o靠近到不能再近(再近就不是对抗样本了)。该算法能够成功的关键就在于确定 η k \eta_k ηk所属的分布 P ( o ^ k − 1 ) P(\hat o^{k-1}) P(o^k1)

作者发现 η k \eta_k ηk的分布为maximum entropy distribution比较合适。此外为了保证在每一次迭代过程中生成的对抗样本不超出样本空间,以及加快收敛,还需要对 η k \eta_k ηk进行一些调整:
(1) o ^ k − 1 + η k ∈ [ 0 , 255 ] \hat o^{k-1} + \eta_k \in [0,255] o^k1+ηk[0,255] ,即生成的对抗样本不超出样本空间;
(2) ∣ ∣ η k ∣ ∣ = δ ⋅ d ( o , o ^ k − 1 ) ||\eta_k||=\delta \cdot d(o,\hat o^{k-1}) ηk=δd(o,o^k1) ,即控制 η k \eta_k ηk的长度以加快收敛,开始的时候为 δ \delta δ设置较大的值,快接近原始样本时为 δ \delta δ设置较小的值;
(3) d ( o , o ^ k − 1 ) − d ( o , o ^ k − 1 + η k ) = ϵ ⋅ d ( o , o ^ k − 1 ) d(o,\hat o^{k-1})-d(o,\hat o^{k-1}+\eta_k)=\epsilon \cdot d(o,\hat o^{k-1}) d(o,o^k1)d(o,o^k1+ηk)=ϵd(o,o^k1),使新的对抗样本 o ^ k − 1 + η k \hat o^{k-1}+\eta_k o^k1+ηk相比上一个对抗样本 o ^ k − 1 \hat o^{k-1} o^k1更接近原始样本。
图二对上述过程进行了进一步解释,左图表示生成初始对抗样本,#1对应(2),#2对应(3)。
在这里插入图片描述

图2
  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值