基于 Flink 的海量日志实时处理系统的实践

本文详述了如何构建一个基于Flink的海量日志实时处理系统,包括日志实时采集(使用Filebeat)、日志格式统一、日志清洗、实时告警、存储和展示。架构设计涉及日志接入层、削峰层、处理层、存储层和展示层,使用Kafka做削峰,Flink进行日志清洗和告警,ElasticSearch存储,Kibana展示日志。
摘要由CSDN通过智能技术生成

海量日志实时处理需求分析

在 11.5 节中讲解了 Flink 如何实时处理异常的日志,在那节中对比分析了几种常用的日志采集工具。我们也知道通常在排查线上异常故障的时候,查询日志总是必不可缺的一部分,但是现在微服务架构下日志都被分散到不同的机器上,日志查询就会比较困难,所以统一的日志收集几乎也是每家公司必不可少的。据笔者调研,不少公司现在是有日志统一的收集,也会去做日志的实时 ETL,利用一些主流的技术比如 ELK 去做日志的展示、搜索和分析,但是却缺少了日志的实时告警。在本节中,笔者将为大家做一个全方位的日志链路讲解,包含了日志的实时采集、日志的 ETL、日志的实时监控告警、日志的存储、日志的可视化图表展示与搜索分析等。

海量日志实时处理架构设计

分析完我们这个案例的需求后,接下来对整个项目的架构做一个合理的设计。

整个架构分为五层:日志接入层、日志削峰层、日志处理层、日志存储层、日志展示层。

  • 日志接入层:日志采集的话使用的是 Filebeat 组件,需要在每台机器上部署一个 Filebeat。
  • 日志削峰层:防止日志流量高峰,使用 Kafka 消息队列做削峰。
  • 日志处理层:Flink
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhisheng_blog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值