Apache Paimon 介绍

这篇文章介绍了FlinkTableStore的发展历程,从FlinkTableStore到ApachePaimon的转变,强调了其在实时流处理、数据湖存储和集成FlinkCDC方面的进步。Paimon作为一个独立项目,获得了更多公司的关注和支持,提供了高效的实时数据入湖解决方案和通用的流批融合架构。
摘要由CSDN通过智能技术生成

从 Flink Table Store 演进而来

Flink table store

架构如下图:
8c80c1360964d5da75b6acc6a575d394.png
(和今天 Paimon 的架构相比,Log System 不再被推荐使用,Lake Store 的能力大幅强于 Log System,除了延时)

2021 年 9 月,发布了 0.2 版本,陆续有在生产使用。

Flink Table Store 是一个数据湖存储,用于实时流式 Changelog 写入 (比如来自 Flink CDC 的数据) 和高性能查询。它创新性的结合湖存储和 LSM 结构,深度对接 Flink,提供实时更新的系统设计,支撑大吞吐量的更新数据摄取,同时提供良好的查询性能。

0.3 形成了一个 Streaming Lakehouse 的基本雏形,我们可以比较自信的说出,0.3 可以推荐生产可用了。

基于 Flink Table Store 不仅可以支持数据实时入湖,而且支持 Partial Update 等功能,帮助用户更灵活的在延迟和成本之间做均衡。

Apache Paimon

在发布了三个版本后,虽然 Flink Table Store 具备了一定的成熟度,但作为 Flink 社区的一个子项目,在生态发展(比如 Spark 用户选择和使用)方面存在比较明显的局限性。为了让 Flink Table Store 能够有更大的发展空间和生态体系, Flink PMC 经过讨论决定将其捐赠 ASF 进行独立孵化。

2023 年 3 月 12 日,Flink Table Store 项目顺利通过投票,正式进入 Apache 软件基金会 (ASF) 的孵化器,改名为 Apache Paimon (incubating)。

进入孵化器后,Paimon 得到了众多的关注,包括 阿里云、字节跳动、Bilibili、汽车之家、蚂蚁 等多家公司参与到 Apache Paimon 的贡献,也得到了广大用户的使用。

Paimon 和 Flink 集成也在继续,Paimon 集成了 Flink CDC,提出了全自动的 数据 + Schema 的同步,整库同步,带来更高性能的入湖、更低的入湖成本、更方便的入湖体验。

efabae4f1f2b6b7a874bcd5efafc04b3.png
image.png

解决问题:
1、Paimon 实时 CDC 入湖
2、Paimon 实时宽表与流读

Apache Paimon 架构:

ca8aeb7e5d5245ceb9657837f6f0120c.png
image.png

Streaming Lakehouse 架构:

1、数据全链路实时流动,同时沉淀所有数据,提供 AD-HOC 查询

2、通用的离线数据实时化,流批融合的一套数仓

b56ccabe6aae651eaab74bf147b14d52.png
image.png

参考资料:

当流计算邂逅数据湖:Paimon 的前生今世

为什么要学习这门课程?·新一代流式数据湖技术组件深入讲解,帮助你快速构造数据湖知识体系。·为构建湖仓一体架构提供底层技术支撑。本课程将从原理、架构、底层存储细节、性能优化、管理等层面对Paimon流式数据湖组件进行详细讲解,原理+实战,帮助你快速上手使用数据湖技术。讲师介绍华为HCIP认证大数据高级工程师北京猎豹移动大数据技术专家中科院大数据研究院大数据技术专家51CTO企业IT学院优秀讲师电子工业出版社2022年度优秀作者出版书籍:《Flink入门与实战》、《大数据技术及架构图解实战派》。本课程提供配套课件、软件、试题、以及源码。课程内容介绍:1、什么是Apache Paimon2、Paimon的整体架构3、Paimon的核心特点4、Paimon支持的生态5、基于Flink SQL操作Paimon6、基于Flink DataStream API 操作Paimon7、Paimon中的内部表和外部表8、Paimon中的分区表和临时表9、Paimon中的Primary Key表(主键表)10、Paimon中的Append Only表(仅追加表)11、Changelog Producers原理及案例实战12、Merge Engines原理及案例实战13、Paimon中的Catalog详解14、Paimon中的Table详解15、Paimon之Hive Catalog的使用16、动态修改Paimon表属性17、查询Paimon系统表18、批量读取Paimon表19、流式读取Paimon表20、流式读取高级特性Consumer ID21、Paimon CDC数据摄取功能22、CDC之MySQL数据同步到Paimon23、CDC之Kafka数据同步到Paimon24、CDC高级特性之Schema模式演变25、CDC高级特性之计算列26、CDC高级特性之特殊的数据类型映射27、CDC高级特性之中文乱码28、Hive引擎集成Paimon29、在Hive中配置Paimon依赖30、在Hive中读写Paimon表31、在Hive中创建Paimon表32、Hive和Paimon数据类型映射关系33、Paimon底层文件基本概念34、Paimon底层文件布局35、Paimon底层文件操作详解36、Flink流式写入Paimon表过程分析37、读写性能优化详细分析38、Paimon中快照、分区、小文件的管理39、管理标签(自动管理+手工管理)40、管理Bucket(创建+删除+回滚)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhisheng_blog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值