机器学习算法 之 线性回归(linear regreesion)

linear regreesion(线性回归)

我们将用来描述回归问题的标记如下:

m m 代表训练集中实例的数量

n 代表特征的数量

x(i) x ( i ) 表示第 i i 个训练实例,是特征矩阵的第i行,是一个向量

x j ( i ) 表示特征矩阵中第 i i 行的第 j 个特征,也就是第 i i 个训练实例的第 j 个特征

y y 代表目标变量,也就是输出变量

( x , y ) 代表训练集中的一个实例

(x(i),y(i)) ( x ( i ) , y ( i ) ) 代表第 i i 个观察实例

h 代表学习算法的函数,或者加假设(hypothesis)

对于多变量线性回归,假设函数可以设为

hθ(x)=θ0+θ1x1+θ2x2+...+θnxn h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n

为了使公式能够简化,引入 x0=1 x 0 = 1 ,则假设函数变为
hθ(x)=θ0x0+θ1x1+θ2x2+...+θnxn h θ ( x ) = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n
,进行向量化后,最终结果为
hθ(x)=θTX h θ ( x ) = θ T X

我们需要求出 θ θ ,使得对于每一个样本,带入到假设函数中,能得到对应的一个预测值,而我们的目标,是使求出的预测值尽可能的接近真实值

通过最大似然估计来推导目标函数

由于我们实际预测的值和真实值之间肯定会有误差,对于每个样本:

y(i)=θTx(i)+ε(i) y ( i ) = θ T x ( i ) + ε ( i )
其中, y(i) y ( i ) 为当前样本实际真实值, θTx(i) θ T x ( i ) 为预测结果, ε(i) ε ( i ) 即为预测误差

对于整个数据集来说,则:

Y=θTX+ε Y = θ T X + ε

误差 ε(i) ε ( i ) 独立的并且具有相同的分布,并且服从均值为0,方差为 θ2 θ 2 正态分布
正态分布

由于误差服从正态分布,所以:

p(ε(i))=12πσexp(ε(i))
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值