看了一下机器学习这一节,感觉有点乱,人生观乱了,原来如此。建议本文与贝叶斯一起看。
我们设想一个问题如下:学习器工作在X的实例空间和假设空间H,我们现在的任务就是根据实例空间X,然后在H空间中学习出h满足:y = h(x)。现在我们给出了训练样集D,但是D含有随机噪声,而且此噪声服从高斯分布。即满足:
根据贝叶斯理论,我们可以利用先验概率去估计后验概率p(h|d),就是利用观察的结果得到一些先验概率去估计h。假设H空间中含有(h1,h2,h3…..,hn),那么最大后验概率估计的思想,当hi满足p(hi|d)有最大的后验概率,我们就能得出hi就是我们估计的结果。下面推导一下: