极大似然和最小平方误差等价关系

     看了一下机器学习这一节,感觉有点乱,人生观乱了,原来如此。建议本文与贝叶斯一起看。

     我们设想一个问题如下:学习器工作在X的实例空间和假设空间H,我们现在的任务就是根据实例空间X,然后在H空间中学习出h满足:y = h(x)。现在我们给出了训练样集D,但是D含有随机噪声,而且此噪声服从高斯分布。即满足:

               

     根据贝叶斯理论,我们可以利用先验概率去估计后验概率p(h|d),就是利用观察的结果得到一些先验概率去估计h。假设H空间中含有(h1,h2,h3…..,hn),那么最大后验概率估计的思想,当hi满足p(hi|d)有最大的后验概率,我们就能得出hi就是我们估计的结果。下面推导一下:

      

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值