感知模型召回率、精确率计算(终)


上篇文章讲述目标框与感知框交并比计算方法,本文将详细说明召回率与精确率的计算方式。

步骤1:格式化数据

格式化数据分为两步,第一步:格式化标注数据,第二步:格式化感知结果,具体格式如下:

# 标注数据的格式为:
# {
   
#   '文件名': [{'class': value, 'center': [x, y, z], 'size': [l, w, h], 'rotation': value, 'used': False}, ...],
#   '文件名': [{'class': value, 'center': [x, y, z], 'size': [l, w, h], 'rotation': value, 'used': False}, ...],
# }
def _format_mark_data(self):
   _format_mark_data = {
   }
   # mark_data 格式为 {"file_name": [["class", [x, y, z], [l, w , h], rotation], ...]}
   for file_name, targets in self.mark_data.items():
       bounding_boxes = []
       for data in targets:
           bounding_boxes.append({
   "class_name": data[0], "center": data[1], "size": data[2],
                                  "rotation": data[3], "used": False})
       _format_mark_data[file_name] = bounding_boxes
   return _format_mark_data

# 感知结果格式为:
# {
   
#	"class": [
#	    {
   
#	        'file_name': 'file_name'
#	        'confidence': value,
#	        'center': [x, y, z],
#	        'size': [l, w, h],
#	        'rotation': value,
#	    },
#	    ...
#	]
#	...
# }
def _format_res_data(self):
    # res_data 格式为 {"file_name": [["class", [x, y, z], [l, w , h], rotation], ...]}
    _format_res_data = {
   }
    for file_name, targets in self.res_data.items():
        for target in targets
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值