tf.nn.conv2d padding “SAME“ 和“VALID“ 的区别

本文介绍了卷积神经网络中两种不同的填充方式:SAME和VALID。SAME填充确保输出尺寸与输入相同,通过添加边框来保持空间维度;而VALID填充则不使用额外填充,仅处理有效输入数据。理解这两种填充方式对于调整网络结构和保持特征尺寸至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

If you like ascii art:

  • "VALID" = without padding:

       inputs:         1  2  3  4  5  6  7  8  9  10 11 (12 13)
                      |________________|                dropped
                                     |_________________|
    
  • "SAME" = with zero padding:

                   pad|                                      |pad
       inputs:      0 |1  2  3  4  5  6  7  8  9  10 11 12 13|0  0
                   |________________|
                                  |_________________|
                                                 |________________|
    
  • With "SAME" padding, if you use a stride of 1, the layer's outputs will have the same spatial dimensions as its inputs.
  • With "VALID" padding, there's no "made-up" padding inputs. The layer only uses valid input data.

参考自

https://stackoverflow.com/questions/37674306/what-is-the-difference-between-same-and-valid-padding-in-tf-nn-max-pool-of-t

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值