机器学习3补充

这篇博客介绍了正则化在机器学习中的作用,特别是如何通过正则化来防止过拟合。文章讨论了简化成本函数、梯度下降和高级优化方法,并详细阐述了多类分类中的‘一对多’策略。重点讲解了正则化线性回归和逻辑回归,包括梯度下降和正规方程的应用,以及正则化参数 λ 对模型的影响。
摘要由CSDN通过智能技术生成

写笔记,便于记忆,回顾。写的不好的地方,后面再补充。

Simplified Cost Function and Gradient Descent

基于上篇得到的梯度下降算法:
在这里插入图片描述
如果有n个特征。则 在这里插入图片描述
当使用梯度下降法来实现逻辑回归时, 针对 θ0 到 θn, 我们需要用这个表达式来更新这些参数。 可以使用 for 循环来更新这些参数值, 用 for i=1 to n, 或者 for i=1 to n+1。 我们更提倡使用向量化的实现, 可以把所有这些 n 个参数同时更新。

我们之前在谈线性回归时讲到的特征缩放,特征缩放可以提高梯度下降的收敛速度, 这个特征缩放的方法, 也适用于逻辑回归。 如果你的特征范围差距很大的话, 那么应用特征缩放的方法, 同样也可以让逻辑回归中, 梯度下降收敛更快。


这里放入推导过程。以备检验
这里列出线性回归的代价函数。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述


Advanced(高级的) Optimization

用梯度下降的方法最小化逻辑回归中代价函数 J(θ)。 如何通过梯度下降, 使逻辑回归的速度大大提高, 而这也将使算法更加适合解决大型数据的机器学习问题。
现在我们换个角度来看什么是梯度下降, 我们有个代价函数 J(θ), 而我们想要使其最小化, 那么我们需要做的是编写代码, 当输入参数 θ 时, 它们会计算出两样东西: J(θ) 以及 J等于 0、 1 直到 n 时的偏导数项。

1在这里插入图片描述
2在这里插入图片描述
假设我们已经完成了可以实现这两步的代码, 那么梯度下降所做的就是反复执行这两步。
我们编写代码给出代价函数及其偏导数然后传入梯度下降算法中,接下来算法则会为我们最小化代价函数给出参数的最优解。这类算法被称为最优化算法(Optimization Algorithms)。这里结合上篇给出总结,如图:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值