temporal is 处于动态平衡中,因为任何量都不可能永恒不变。 因为宇宙的本质就是变得,所以每个量在一个区间内变化,而保持系统的平衡。 所以没有唯一的准则,而是在不断的变化,人也相应的调整策略。这就是狐狸。 但是又要和刺猬一样,有一个目标,短期目标不断变化,长期目标也有偏动,但是方向不变。 为目标奋斗。这就是刺猬。
鸡尾酒问题
当前语音识别技术已经可以以较高精度识别一个人所讲的话,但是当说话的人数为两人或者多人时,语音识别率就会极大的降低**,这一难题被称为鸡尾酒会问题。**要分离出鸡尾酒会中同时说话的每个人的独立信号,常用的方法是盲信号分离算法。
该问题 给定混合信号,分离出鸡尾酒会中 同时说话的每个人的独立信号。
基于神经网络模型架构,音频-视觉语音分离模型,解决“鸡尾酒会效应”.此外,在多人发声的场景下,视觉信号除了有效提升语音分离的质量,还可以把分离之后的音轨和视频里的人物对应起来。此种方式为其后的语音识别领域提供了许多的可能性。
“鸡尾酒会效应”难题的解决为语音识别领域的许多问题提供了思考路径,同时视觉-音频网络识别系统的提出,也为人声分离提供了视觉+听觉的解决方式。
蝙蝠是如何区分自己和他人发出的超声波信号的呢?科学家通过研究发现,蝙蝠并没有改变发出的超声频率,而是通过叫声变大,持续时间变长,发射频率增多等方式来解决的。动物界的“鸡尾酒会效应”启示无人驾驶:想提高雷达的定位精度,提高信噪比是根本。比如,蝙蝠叫声变大,相当于提高了信号的能量;而叫声持续时间变长和叫声频率增多,则是增加了信号的样本点数。在噪声不相关的情况下,