Python numpy中的correlate相关性详解

文章介绍了numpy库中的correlate函数,解释了如何通过点乘操作在不同模式(same,valid,full)下计算数组之间的相关性,提供示例以帮助理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看代码看见这个方法,记录一下,这个是人家官网的链接np.correlate

云里雾里的,其实就是两个数组点乘,不同模式就是错位点乘,直接看代码

a是原本的数组,v就是滤波器,对应相乘

import numpy as np

mode0 = 'same'
mode1 = 'valid'
mode2 = 'full'

a = [1, 2, 3]
v = [1, 2]

print(np.correlate(a, v, mode0))
print(np.correlate(a, v, mode1))
print(np.correlate(a, v, mode2))

# 结果
[2 5 8]
[5 8]
[2 5 8 3]

在这里插入图片描述

a = [1, 2, 3]
v = [1, 2, 3]

print(np.correlate(a, v, mode0))
print(np.correlate(a, v, mode1))
print(np.correlate(a, v, mode2))

# 结果
[ 8 14  8]
[14]
[ 3  8 14  8  3]
a = [1, 2, 3, 4]
v = [1, 2]

print(np.correlate(a, v, mode0))
print(np.correlate(a, v, mode1))
print(np.correlate(a, v, mode2))

# 结果
[ 2  5  8 11]
[ 5  8 11]
[ 2  5  8 11  4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赫凯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值