CMakeList的基本写法

最近需要自己写CMakaList,所以简要写一下一些基本的操作。为图实用,只写了常用的简单操作。

1.确定cmake最低版本需求
cmake_minimum_required(VERSION 3.0.0)
2.确定工程名
project(XXX)

这个不是必须,但是最好写一下,这一行会引入两个变量XXX_BINARY_DIR (二进制文件保存路径)和 XXX_SOURCE_DIR(源代码保存路径)

3.添加需要的库
set(CMAKE_PREFIX_PATH ${CMAKE_PREFIX_PATH} "/usr/local/share/OpenCV")
find_package(OpenCV 3.2.0 REQUIRED)

find_package令CMake搜索所有名为Find.cmake的文件,3.2.0 REQUIRED给出需要的具体版本,以避免一台电脑安装了多个版本opencv而造成不必要的错误。通常情况下,通过设置CMAKE_PREFIX_PATH来设置CMake搜索路径,通常情况下不加也可以,但考虑到代码的可移植性,最好还是对搜索路径进行对应设置

4.添加需要的头文件
include_directories(include)
include_directories(${OpenCV_INCLUDE_DIRS})
include_directories(/usr/local/cuda-8.0/include/)

如上,将头文件所在路径写在括号内即可(上例中将头文件放在了include文件夹中),而需要的一些库的头文件可以如2行变量的形式,也可以如3行直接给出库头文件所在的位置

5.确定编译语言

以使用c++为例,可以用set来设定

set(CMAKE_CXX_STANDARD 11)

也可以通过add_definitions来设定

add_definitions(-std=c++11)
6.设定变量
ADD_DEFINITIONS( -DGPU -DCUDNN )

如darknet中代码编译需要define变量GPU,CUDNN,OPENCV等,则用该语句进行定义

7.添加源代码
set(SRC  ${PROJECT_SOURCE_DIR}/test.cpp)

通过设定SRC变量,将源代码路径都给SRC,如果有多个,可以直接在后面继续添加:

set(SRC 
    ${PROJECT_SOURCE_DIR}/src/detector.cpp
    ${PROJECT_SOURCE_DIR}/src/demo.cpp
    ${PROJECT_SOURCE_DIR}/test.cpp
)
8.编译动态库并链接库文件
link_directories(${PROJECT_SOURCE_DIR})
add_library(plate_recognition SHARED ${SRC})
target_link_libraries(plate_recognition ${OpenCV_LIBS})
target_link_libraries(plate_recognition -llianghao  -lpthread -lm -lstdc++)

add_library为生成库文件,SHARED为生成动态库,STATIC为生成静态库,前面的plate_recognition为生成的文件名,如上生成的动态库为libplate_recognition.so,最后${SRC}为源文件路径。
target_link_libraries为链接需要的库,plate_recognition为需要进行链接的文件名,后面接需要链接的库,如第三行链接了opencv。如果需要链接其他的动态库,-l后接去除lib前缀和.so后缀的名称,以链接liblianghao.so为例,-llianghao。

9.生成可执行文件
link_directories(${PROJECT_SOURCE_DIR})
add_executable(Test ${SRC})
target_link_libraries(Test ${OpenCV_LIBS})
target_link_libraries(Test -llianghao  -lpthread -lm -lstdc++)

和8中只有第二行的区别,add_executable表示生成可执行文件,Test为生成的可执行文件名,后接源文件路径。

10.整体实例
cmake_minimum_required(VERSION 3.2.0)
add_definitions(-std=c++11)
add_definitions(-g -o2)
#define cuda,opencv,cudnn
ADD_DEFINITIONS( -DGPU -DCUDNN ) 
# use opencv
set(CMAKE_PREFIX_PATH ${CMAKE_PREFIX_PATH} "/usr/local/share/OpenCV")
find_package(OpenCV 3.2.0 REQUIRED)
if(NOT OpenCV_FOUND)
  message(WARNING "OpenCV not found!")
else()
  include_directories(${OpenCV_INCLUDE_DIRS})
endif()
# CUDA path
include_directories(/usr/local/cuda-8.0/include/)
# headers
include_directories(${PROJECT_SOURCE_DIR}/include)
#sources
set(SRC  ${PROJECT_SOURCE_DIR}/test.cpp)
#lib link
link_directories(${PROJECT_SOURCE_DIR})
#build so
add_library(plate_recognition SHARED ${SRC})
target_link_libraries(plate_recognition ${OpenCV_LIBS})
target_link_libraries(plate_recognition -lxxx -lxxx   -lpthread -lm -lstdc++)
引用中的CMakeList文件展示了一个CUDA项目的CMake配置文件。首先,指定了所需的CMake版本,并命名了项目为test_cuda。然后通过find_package命令找到CUDA包。接下来设置了nvcc编译器的相关标志,包括设备架构和编译选项。使用file命令找到所有的头文件和源文件,并使用source_group命令将它们分组。最后,使用CUDA_ADD_EXECUTABLE命令将当前的源文件添加到项目中。 引用中的main.cpp文件展示了一个CUDA工程中调用C++的示例。首先包含了stdio.h、cuda_runtime.h和device_launch_parameters.h这三个头文件。然后定义了一个extern "C"函数addWithCuda,该函数用于在CUDA中进行向量相加。在main函数中,定义了一个数组a和b,以及一个用于保存结果的数组c。调用addWithCuda函数并检查调用是否成功,最后输出结果和一条成功信息。最后,调用cudaDeviceReset函数对CUDA设备进行重置。 引用中的CMakeLists.txt文件展示了另一个CUDA项目的CMake配置文件。与引用中的文件类似,首先指定了所需的CMake版本和项目名称。然后通过find_package命令找到CUDA包。接下来设置了nvcc编译器的相关标志。使用file命令找到所有的头文件和源文件,并使用source_group命令将它们分组。最后,使用CUDA_ADD_EXECUTABLE命令将当前的源文件添加到项目中。 综上所述,引用和引用展示了两个不同CUDA项目的CMake配置文件,用于编译和构建CUDA程序。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [C++ 与 Cuda 混合编程的CMakeList 写法 与例子](https://blog.csdn.net/comedate/article/details/109347874)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [CMake构建CUDA项目中使用的CMakeLists.txt配置](https://blog.csdn.net/baobei0112/article/details/123598794)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值