背包问题-动态规划

动态规划求解背包问题:
基本思想:通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。在求解背包问题的时候就体现为从0个物体到全部物体都有最优解,所以每增加一个物体就先考虑前一个物体时的最优解,最后将所有情况的最优解组合起来就是最后的解答。

求解:

把背包问题具体化,以物体个数为纵坐标,背包容量为横坐标,将放入不同数量物体与背包不同容量的情况下的最优解作为该坐标的值。

无非就是两种情况:

第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);

第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }

       其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);

可得到动态函数:

具体代码实现

int KnapSack(int n,struct thing a[],int C,int x[]){
    int V[N][10*N];
    for(int i = 0; i <= n; i++)//初始化第0列
        V[i][0] = 0;
    for(int j = 0; j <= C; j++)//初始化第0行
        V[0][j] = 0;
        
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= C; j++)
        if(j < a[i-1].wight)
            V[i][j] = V[i-1][j];  //当背包容量承受不住加入物体的重量 
        else
            V[i][j] = MAX(V[i-1][j],V[i-1][j-a[i-1].wight] + a[i-1].value); //当背包物体能承受住新加入物体重量,将加入与不加入value对比求最大值 
            
    return V[n][C];
}

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值