######好好好######MSE与CE的区别?数学推导 本质理解

  面试官先问了几个简单问题,精灵自然轻松答出来了。终于面试官问到了MSE和CE的区别。 面试官:MSE和CE你熟悉吗? 精灵:熟悉,MSE就是mean square error,CE就是cross entropy。 面试官:没错,是这样的,训练神经网络时,你经常用哪一个? 精灵:如果是...

2018-10-31 10:57:46

阅读数:56

评论数:0

MCMC(Markov Chain Monte Carlo) and Gibbs Sampling

1.   随机模拟 随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗方法(Monte Carlo Simulation)。这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆、冯.诺依曼、费米、费曼、Nicholas Metropolis, ...

2018-01-03 11:42:37

阅读数:261

评论数:0

蒙特卡洛采样之拒绝采样(Reject Sampling)

引子 蒙特卡洛(Monte Carlo)方法是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为基础的数值计算方法。它的核心思想就是使用随机数(或更常见的伪随机数)来解决一些复杂的计算问题。 当所求解问题可以转化为某种随机分布的特征数(比如随机事件...

2018-01-03 11:38:58

阅读数:222

评论数:0

####好好好########随机采样和随机模拟

http://blog.csdn.net/pipisorry/article/details/50615652 随机采样方法 模拟方法:是一种基于“随机数”的计算方法,基于数值采样的近似推断方法,也被称为蒙特卡罗( MonteCarlo )方法、随机模拟方法。 通常均匀分...

2018-01-03 11:13:36

阅读数:211

评论数:0

####好#几种更牛的采样方法###随机模拟的基本思想和常用采样方法(sampling)

通常,我们会遇到很多问题无法用分析的方法来求得精确解,例如由于式子特别,真的解不出来; 一般遇到这种情况,人们经常会采用一些方法去得到近似解(越逼近精确解越好,当然如果一个近似算法与精确解的接近程度能够通过一个式子来衡量或者有上下界,那么这种近似算法比较好,因为人们可以知道接近程度,换个说法,一...

2018-01-03 11:01:17

阅读数:154

评论数:0

多分类问题multicalss classification

多分类问题:有N个类别C1,C2,...,Cn,多分类学习的基本思路是“拆解法”,即将多分类任务拆分为若干个而分类任务求解,最经典的拆分策略是:“一对一”,“一对多”,“多对多” (1)一对一 给定数据集D={(x1,y1),(x2,y2),...,(xn,yn)},yi€{c1,c2...

2017-12-27 11:37:53

阅读数:214

评论数:0

从随机过程到马尔科夫链蒙特卡洛方法

1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning tutorial 里面讲解到的 RBM 用到了 Gibbs sampling,当时因为要赶着做项目,虽然一头雾水,但是也没没有时间...

2017-12-27 11:08:56

阅读数:103

评论数:0

#####好好好####关于模型检验的ROC值和KS值的异同_ROC曲线和KS值

关于模型检验的ROC值和KS值的异同_ROC曲线和KS值 按我的理解,ROC曲线是累计坏占比曲线(图中蓝色曲线)下面的面积(>0.5),KS值是累计坏占比曲线-累计好占比曲线差值(图中红色曲线)的最大值。实际上他们都是一样的? 不知道我的理解是否有误?谢谢!   ...

2017-11-16 11:25:41

阅读数:755

评论数:0

ROC曲线-阈值评价标准

ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏...

2017-11-07 14:21:17

阅读数:166

评论数:0

正则化与数据先验分布的关系

过拟合的原因:使用的模型过于复杂,根据VC维理论:VC维很高的时候,就容易发生bias很低,但variance很高的情形. 解决过拟合最常用的方法就是regularization, 常用的有:L1正则, L2正则等.L1正则会使得参数稀疏化, L2正则可以起到平滑的作用, 从贝叶斯理论的角度...

2017-08-29 12:41:07

阅读数:384

评论数:0

决策树学习笔记整理

本文目的 最近一段时间在Coursera上学习Data Analysis,里面有个assignment涉及到了决策树,所以参考了一些决策树方面的资料,现在将学习过程的笔记整理记录于此,作为备忘。   算法原理 决策树(Decision Tree)是一种简单但是广泛使用的分类...

2017-08-22 17:30:05

阅读数:170

评论数:0

启发式算法(Heuristic Algorithm)

启发式算法(Heuristic Algorithm)有不同的定义:一种定义为,一个基于直观或经验的构造的算法,对优化问题的实例能给出可接受的计算成本(计算时间、占用空间等)内,给出一个近似最优解,该近似解于真实最优解的偏离程度不一定可以事先预计;另一种是,启发式算法是一种技术,这种技术使得在可接受...

2017-07-20 15:33:01

阅读数:4754

评论数:0

ARIMA模型

ARIMA模型 自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA) 目录 [隐藏] 1 什么是ARIMA模型?2 ARIMA模型的基本思想3 ARIMA模型预测的基本程序4 ...

2017-07-08 13:29:36

阅读数:949

评论数:0

ARIMA模型

ARIMA模型 自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA) 目录 [隐藏] 1 什么是ARIMA模型?2 ARIMA模型的基本思想3 ARIMA模型预测的基本程序4 相关...

2017-06-07 10:16:09

阅读数:5120

评论数:0

DTW(Dynamic Time Warping / 动态时间归整) python实现

[python] view plain copy from math import *   import matplotlib.pyplot as plt   import numpy      def print_matrix(mat) :       p...

2017-06-02 16:46:34

阅读数:2101

评论数:0

矩阵特征值分解与奇异值分解含义解析及应用

特征值与特征向量的几何意义 矩阵的乘法是什么,别只告诉我只是“前一个矩阵的行乘以后一个矩阵的列”,还会一点的可能还会说“前一个矩阵的列数等于后一个矩阵的行数才能相乘”,然而,这里却会和你说——那都是表象。 矩阵乘法真正的含义是变换,我们学《线性代数》一开始就学行变换列变换,那才是线代的...

2017-03-22 11:10:51

阅读数:391

评论数:0

softmax非常形象的示意图

2017-03-08 17:25:28

阅读数:1820

评论数:0

仿射变换的意义

仿射变换(Affine Transformation或 Affine Map)是一种二维坐标到二维坐标之间的线性变换,它保持了二维图形的“平直性”(即:直线经过变换之后依然是直线)和“平行性”(即:二维图形之间的相对位置关系保持不变,平行线依然是平行线,且直线上点的位置顺序不变)。放射变换可以写为...

2017-01-13 15:04:27

阅读数:500

评论数:0

pyWavelet 小波工具箱的使用笔记

1  介绍 本文档的内容参考了pyWavelet 0.1.6的User Guide和ver. 0.2.0的网上例子,主要是把我目前所需要的内容进行了翻译和整理得到的。 主要包含了1D、2D的分解与重构方法,和稳态小波分解重构等内容。 小波包的部分没有翻译,日后有需要的话可能增加。 下载...

2016-12-01 17:39:53

阅读数:5661

评论数:0

EXCEL如何行与列互换转置表格

利用的是EXCEL选择性粘贴功能 生活中我们出于需要,要转化行列的次序,EXCEL可以很简单的完成 选中表格复制 在所需要转置的地方右键 【选择选择性粘贴】 再选转置选项 ok 效果如图

2016-11-07 16:35:30

阅读数:998

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭