对于堆来说,一个完全二叉树,父节点的值大于子节点的值。完全二叉树的生成是从上往下,从左到右
堆排序步骤:
1.将无序构建一个堆,根据升序降序选择大顶堆或者小顶堆,
大顶堆:每个结点的值都大于或等于其左右孩子结点的值
小顶堆:每个结点的值都小于或等于其左右孩子结点的值
2.将堆顶元素和末尾元素交换,将最大的元素沉到数组末端
3.重新调整结构,使其满足堆的定义,然后继续交换堆顶元素和当前末尾元素,反复执行调整和交换步骤,直到整个有序。
具体实现代码:
import java.util.Arrays;
public class HeapSort {
public static void main(String[] args) {
int[] arr=new int[]{9,6,8,7,0,1,10,4,2};
heapSort(arr);
System.out.println(Arrays.toString(arr));
}
public static void heapSort(int[] arr){
//开始位置是最后一个非叶子节点,
// 即最后一个节点的父节点
int start=(arr.length-1)/2;
//调整为一个大顶堆
for (int i=start;i>=0;i--){
maxHeap(arr,arr.length,i);
}
//调整
for(int i=arr.length-1;i>0;i--){
//先把数组中的第0个和堆中的最后一个数进行交换
int temp=arr[0];
arr[0]=arr[i];
arr[i]=temp;
//再把前面调整处理成大顶堆。
maxHeap(arr,i,0);
}
}
//从第一个非叶子节点开始进行调整。
/// 数组,调整堆的长度 开始的
public static void maxHeap(int[] arr,int size,int index){
//左边节点
int leftNode=2*index+1;
//右边节点
int rightNode=2*index+2;
int max=index;
//和两个子节点分别对比,找出最大的节点
if(leftNode<size && arr[leftNode]>arr[max]){
max=leftNode;
}
if(rightNode<size && arr[rightNode]>arr[max]){
max=rightNode;
}
//交换位置
if(max!=index){
int temp=arr[index];
arr[index]=arr[max];
arr[max]=temp;
//交换位置以后,可能会破坏之前排好的堆
//所以之前的排好的堆进行调整
maxHeap(arr,size,max);
}
}
}