三重门问题与Bayes理论

1.  The problem setting

三重门问题(山羊悖论,或Monty Hall问题)描述如下。

“三个门标记为1,2,3,随机选取一个门放置奖品。游戏开始: 首先,选手任选一个门,如1号。然后,知道奖品在哪个门后的主持人会打开另外两个门中的一个,使得打开的那个门不含有奖品,如3号。此时,选手有更换选择的机会,如放弃原先选择的1号门,改选2号门。问:选手改选对自己是否有利?”

2.  The problem solving

用贝叶斯定理解决该问题如下。

  • 把上述问题形式化如下。

H = 1 表示1号门后有奖品;H = 2 表示2号门后有奖品;H = 3 表示3号门后有奖品。

D = 2 表示主持人打开2号门; D = 3 表示主持人打开3号门。

  • 由题意可得如下已知概率。

P(H=1) = 1/3;  P(H=2) = 1/3;  P(H=3) = 1/3;

P(D=2|H=1) = 1/2;  P(D=3|H=1) = 1/2;

P(D=2|H=2) = 0;  P(D=3|H=2) = 1;

P(D=2|H=3) = 1;  P(D=3|H=3) = 0.

  • 选手所关心的概率是:P(H=1|D=3), P(H=2|D=3)。由贝叶斯定理:

P(H=1|D=3) = P(H=1) * P(D=3|H=1) / P(D=3) = (1/3 * 1/2) / P(D=3);

P(H=2|D=3) = P(H=2) * P(D=3|H=2) / P(D=3) = ( 1/3 * 1 ) / P(D=3);

注1:P(H=3|D=3) = P(H=3) * P(D=3|H=3) / P(D=3) = (0 * 1/2) / P(D=3) = 0.

注2:归一化证据 P(D=3) = 1/2.

所以:

P(H=1|D=3)  = 1/3

P(H=2|D=3)  = 2/3

P(H=2|D=3) / P(H=1|D=3) = 2 : 1

因此选手改选对自己是有利的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值