1. The problem setting
三重门问题(山羊悖论,或Monty Hall问题)描述如下。
“三个门标记为1,2,3,随机选取一个门放置奖品。游戏开始: 首先,选手任选一个门,如1号。然后,知道奖品在哪个门后的主持人会打开另外两个门中的一个,使得打开的那个门不含有奖品,如3号。此时,选手有更换选择的机会,如放弃原先选择的1号门,改选2号门。问:选手改选对自己是否有利?”
2. The problem solving
用贝叶斯定理解决该问题如下。
- 把上述问题形式化如下。
H = 1 表示1号门后有奖品;H = 2 表示2号门后有奖品;H = 3 表示3号门后有奖品。
D = 2 表示主持人打开2号门; D = 3 表示主持人打开3号门。
- 由题意可得如下已知概率。
P(H=1) = 1/3; P(H=2) = 1/3; P(H=3) = 1/3;
P(D=2|H=1) = 1/2; P(D=3|H=1) = 1/2;
P(D=2|H=2) = 0; P(D=3|H=2) = 1;
P(D=2|H=3) = 1; P(D=3|H=3) = 0.
- 选手所关心的概率是:P(H=1|D=3), P(H=2|D=3)。由贝叶斯定理:
P(H=1|D=3) = P(H=1) * P(D=3|H=1) / P(D=3) = (1/3 * 1/2) / P(D=3);
P(H=2|D=3) = P(H=2) * P(D=3|H=2) / P(D=3) = ( 1/3 * 1 ) / P(D=3);
注1:P(H=3|D=3) = P(H=3) * P(D=3|H=3) / P(D=3) = (0 * 1/2) / P(D=3) = 0.
注2:归一化证据 P(D=3) = 1/2.
所以:
P(H=1|D=3) = 1/3
P(H=2|D=3) = 2/3
P(H=2|D=3) / P(H=1|D=3) = 2 : 1
因此选手改选对自己是有利的。