谐波失真

1.定义
  失真是指信号在传输过程中与原有信号或标准相比所发生的偏差。 我们在音频领域所说的失真通常
是指谐波失真,这种失真是由电路中的非线性元件引起的,信号通过这些元件后,产生了新的频率分量
(谐波),这些新的频率分量对原信号形成干扰,这种失真的特点是输入信号的波形与输出信号波形形状
不一致,即波形发生了畸变。除谐波失真外,还存在包络失真、数字混叠失真和互调失真等,这些失真
有的是我们需要的音乐效果,有的则是会让我们的音乐变得糟糕的失真。

2.削波失真
  一提到削波这种现象,大部分人都会联想到失真,但事实上,削波是产生失真的原因,由此产生的结
果就是谐波失真。每个电路和音响单元都有一定的动态,若信号电平过强,超过电路允许范围(阈
值),信号就不能顺利通过,而其波形被削掉一部分,波形就会由圆滑变成平滑的,变得和方波类似。
这就给信号增加高频泛音,而高频泛音与演奏的音符和谐相关。
  由于运行原理的不同,不同类型的电路削波也不尽不同。当信号饱和时,电子管电路会产生“软”削
波,随着音量的增大,电子管电路会逐渐断开。
当信号变得过大(信号从纯净到失真,中间有一个明显的截止)时,大多数基于晶体管的电路会产生“硬”
削波,而电子管饱和度可以通过巧妙的设计来模拟。

3.谐波失真
  可以通过削波添加两种类型的谐波(偶次和奇次),这两种谐波结合到一起能为每个特定的放大器或
失真效果赋予其自身的复杂性和音调特征。

  与广为流传的神话相反,基于电子管或基于晶体管的设计都不会产生奇次或偶次谐波。 相反,电路
的拓扑结构和使用的元件才是产生失真特性的原因。 单端电路产生强大的偶次谐波,但同样也会产生
一些奇怪的谐波。 推挽设计主要抵消偶次谐波,使奇数保持完整。

  二阶(或“偶次”)谐波是信号中基频的偶数倍,其中一个简单的八度音是最突出的。 由于偶次谐波
始终与正在播放的音符保持一致,因此它们为各种信号,甚至为复杂的音色和密集的和弦,提供了令人
愉悦的丰富感。

  三阶(或“奇次”)谐波是基波的奇数倍,最强的是八度加五分之一。这使得摇滚和金属音乐的声音更
加刺耳、尖锐。由于第五个,奇次谐波在强力和弦上听起来很讨人喜欢,而其他音程- 例如三分之一和
七分之一会变得模糊不清,难以分辨。

4.总谐波失真(THD)
  是对器件产生的总失真的测量 ,即输出端与输入端所有谐波的总和。 这个统计数字用百分数表示,
适用于麦克风、前置放大器、扬声器和任何其他有利于纯信号的设备。 THD为零在实验室之外是不可能
实现的,但在高端设备中,总谐波失真小于1%则是非常常见的。

5.其他的失真类型
  饱和失真是当电子管和磁带达到其预定范围的上限时,音调的逐渐变化。饱和失真通常会产生一个柔
和,令人愉快的压缩,这也许多踏板和插件设计师不遗余力地模仿这种失真类型的原因。

  互调失真是指两种或多种不同频率的信号通过放大器或扬声器后产生差拍与构成新的频率分量。当不
和谐的音程通过模糊的踏板播放时,会产生显著的互调失真,从而产生浑浊、难以分辨的声音。
  当声音的振幅随时间改变时,就会产生包络失真。 例如,压缩器允许用户通过增强维持和降低瞬态
来控制具有不受欢迎的包络的声音。 合成器上的放大器包络则相反,能为其他静态波提供起音、衰
减、延音和释音特性。

  相位失真是当信号的全部或部分相位发生偏移时所发生的现象,通常是电子电路的副作用。在特定频
段经过了处理而其他频段没有经过处理的情况下,多频段均衡器会导致相位失真,而诸如母带均衡器这
类高端的设备就是专门为将这种影响降到最低而设计的。

  从技术上来讲,噪声并不是失真,而是那些信号中不需要的内容,例如两个无线电台之间的串扰。 
噪声可能会通过不平衡电缆,单线圈拾音器,接地环路和阻抗匹配不良潜入到信号中。 所有的电路都
有本底噪声或恒定的低电平噪声,可通过适当的增益分级将其降至最低。

  当信号超过传输系统的限制时,就会产生数字削波。跟模拟电路一样,数字音频系统可传输的信息是
有上限(称为满量程)的。 当一个信号超过0dB满量程时,它就会发出一种刺耳的、听起来很不自然的
声音。

  混叠是数字音频的另一种副作用,对连续信号进行等间隔采样时,如果不能满足采样定理,采样后信
号的频率就会重叠,即高于采样频率一半的频率成分将被重建成低于采样频率一半的信号,这种频谱的
重叠导致的失真就是混叠。一些插件和数字设备会有一种称为“提升采样”的功能,这种功能可以在处理
信号前先提高采样率,从而避免混叠现象产生。 

 

<think>好的,我现在需要处理用户关于谐波失真计算公式的问题。首先,我得仔细看看用户的具体需求。用户明确提到想查找谐波失真的计算公式,所以我的首要任务是找到正确的公式,并确保引用的来源准确。 根据用户提供的引用内容,引用[1]和[2]都提到了总谐波失真(THD)的相关内容。引用[1]中说明THD是谐波总和除以基波,并分为电压和电流两种。而引用[2]则给出了THD的具体定义和计算公式,即基波信号的均方根值与谐波均方根值之和的比率,并以分贝表示。这里需要确认公式的正确形式。 我需要区分两种情况:用户可能指的是THD的计算方式有两种,一种是相对于基波的比率,另一种是相对于总信号的比率。根据引用[2],THD定义为基波信号的均方根值与其谐波的均方根值之和的比率,但实际公式可能需要进一步核实。通常,THD有两种表达方式:一种是将谐波的总和与基波的比值,另一种是与总信号(基波加谐波)的比值。例如,IEEE可能推荐其中的一种标准。 在引用[2]中提到的公式是SNR的计算,但THD的具体公式需要从定义出发。定义中提到“基波信号的均方根值与其谐波的和方根的平均值之比”,这可能需要更准确的数学表达。正确的公式应该是总谐波失真等于各次谐波分量的平方和的平方根除以基波分量的均方根值,再乘以100%得到百分比,或者转换为分贝值。 此外,用户提供的引用[4]提到关于声学中的THD测量,可能涉及不同的应用领域,但基本公式应该一致。需要确保公式的通用性,无论是电压、电流还是声学信号,THD的计算方法都是类似的。 现在需要将这些信息整合成一个清晰、准确的回答。首先给出THD的定义,然后列出两种常见的计算公式,并说明它们的区别和应用场景。同时,引用相关的参考文献,如引用[1]和[2],来支持公式的正确性。注意使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,并确保公式语法正确。 可能还需要解释公式中的各个符号代表什么,例如V_n表示第n次谐波的电压,V_1是基波电压等。同时,分贝转换的公式也需要正确呈现,即20倍对数或者10倍对数,这取决于功率或幅值的转换。 最后,生成的相关问题需要与THD相关,例如不同领域中的应用、计算时的注意事项、与其他指标的关系等,这有助于用户进一步探索该主题。 总结步骤: 1. 定义总谐波失真(THD)。 2. 提供两种常见的计算公式(基波相关和总信号相关)。 3. 解释公式中各符号的意义。 4. 分贝转换公式。 5. 引用支持来源。 6. 生成相关问题。</think>根据您提供的引用信息和工程领域通用定义,总谐波失真(THD)的计算公式分为两种常见形式: ### 一、基波为基准的THD计算公式 $$THD = \frac{\sqrt{\sum_{n=2}^{\infty} V_n^2}}{V_1} \times 100\%$$ 其中: - $V_1$表示基波分量的均方根值 - $V_n$表示第$n$次谐波分量的均方根值 - 计算结果以百分比形式表示失真程度[^1][^2] ### 二、总信号为基准的THD计算公式 $$THD = \frac{\sqrt{\sum_{n=2}^{\infty} V_n^2}}{\sqrt{V_1^2 + \sum_{n=2}^{\infty} V_n^2}} \times 100\%$$ 这种形式将谐波失真与总信号能量进行比较,常用于电力系统分析[^1] ### 三、分贝(dB)表示形式 $$THD_{dB} = 20\log_{10}\left(\frac{\sqrt{\sum_{n=2}^{\infty} V_n^2}}{V_1}\right)$$ 通过分贝值可以更直观地比较不同系统的谐波失真水平[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值