昨天听曾主任说起今天腾讯的一道笔试题,于是今天就上网搜了一下,搜出一道去年Tencent的笔试题,源自于 2016校招腾讯研发岗笔试题(第二题),感觉挺有意思,自己也做了一下。
Analysis
题目如下:
写成方程组的形式:
a1+a2−9=4a4−a5×a6=4a7+a8−a9=4a1+a4÷a7=4a2−a5×a8=49−a6−a9=4(1)(2)(3)(4)(5)(6)
有8个待求未知数,但有6个方程,故此方程有无数组解,不妨先考虑求解整数解。先固定两个未知数,即把它当做已知数:
a1
、
a7
由(1)
式可得:
a2=13−a1
注意到,由于所有的未知数都是在
0~100
之间,所以,
a1、a2
范围为
[0,13]
。
而且,在实际编程求解时。此时的 a2 是算出值的,可以当做已知,用来求解下一个未知数。
根据
(4)
式,可知:
a4=a7×(4−a1)
由此更进一步的确定 a1 的范围: [0,4]
由
(5)
式得:
a8=a2−4a5
再联合
(2)、(5)
两式:
a2+a4−a5×(a8+a6)=8
由此可得:
a6+a8=a2+a4−8a5(a)
联合
(3)(6)
两式可得:
a6+a7+a8=9(b)
因此, a6、a7、a8 的范围在 [0,9] ,且:
a6+a8=9−a7
联立
(a)
式,得到:
a5=a2+a4−89−a7
由
(2)
式,得
a6
:
a6=(a4−4)⋅(9−a7)a2+a4−8
往下很容易得:
a8=a2−4a5
a9=5−a6
至此,已经完成方程组未知数的逐步求解,前面求解的未知数是求解后面未知数的必要条件。通过对
a1、a7
的迭代来完成求解,且
a1、a7
有大致的范围:
a1∈[0,4]a7∈[0,9]
Implement
于是,用C++
实现程序如下:
#include<iostream>
using namespace std;
int main()
{
double a1, a2;
double a3 = 9;
double a4, a5, a6;
double a7, a8, a9;
for(a1 = 0; a1 <= 4; a1 = a1 + 1)
{
for(a7 = 0; a7 <= 9; a7 = a7 + 1)
{
a2 = 13 - a1;
a4 = a7 * (4 - a1);
a5 = (a2 + a4 - 8) / (9 - a7);
if (a5 > 100 || a5 < 0)
continue;
a6 = (a4 - 4) * (9 - a7) / (a2 + a4 -8);
if (a6 > 100 || a6 < 0)
continue;
a8 = (a2 - 4) / a5;
if (a8 > 100 || a8 < 0)
continue;
a9 = 5 - a6;
if (a9 > 100 || a9 < 0)
continue;
cout << "a1: " << a1 << " " <<"a2: " << a2 << " " <<"a3: " << a3 << endl;
cout << "a4: " << a4 << " " <<"a5: " << a5 << " " <<"a6: " << a6 << endl;
cout << "a7: " << a7 << " " <<"a8: " << a8 << " " <<"a9: " << a9 << endl << endl;
}
}
}
Result
执行结果如下:
满足条件的整数解就一组,小数解很多。
综上,本题实际上就是一道数学题,只不过因为方程组里面含有二次项。所以,要避免求解二次方程,所以在选择固定未知数的时候要注意。