Preface
最近在做 video caption 相关,要处理大量视频。
今天碰到一个问题,就是要将 YoutubeClips 数据集 中的 avi 格式的视频,将其视频中的每一帧提取出来。之后用 High accuracy optical flow estimation based on a theory for warping 提出的 Optical Flow(光流),提取运动的光流特征。
Method 1
方法 1 是最简单的,用 FFmpeg 工具来完成。
具体的网上有很多这方面的资料,本人只是简单了解了一下如何使用。如下图,有一个名为 ffmpeg_test.avi
的视频:
在当前目录打开终端,输入如下命令:
$ffmpeg -i ffmpeg_test.avi frames_%03d.jpg -hide_banner
以上我没有指定太多的参数,实际上有很多参数可以指定,如起止的时间,几秒钟取一帧等等。
输入即可获得每一帧。
Method 2
下面就是可以用 cv2
模块中的 VideoCapture
、VideoWriter
来提取了,具体代码如下:
#! encoding: UTF-8
import os
import cv2
import cv
videos_src_path = '/home/ou-lc/chenxp/Downloads/Youtube/youtube_select'
videos_save_path = '/home/ou-lc/chenxp/Downloads/Youtube/youtube_frames'
videos = os.listdir(videos_src_path)
videos = filter(lambda x: x.endswith('avi'), videos)
for each_video in videos:
print each_video
# get the name of each video, and make the directory to save frames
each_video_name, _ = each_video.split('.')
os.mkdir(videos_save_path + '/' + each_video_name)
each_video_save_full_path = os.path.join(videos_save_path, each_video_name) + '/'
# get the full path of each video, which will open the video tp extract frames
each_video_full_path = os.path.join(videos_src_path, each_video)
cap = cv2.VideoCapture(each_video_full_path)
frame_count = 1
success = True
while(success):
success, frame = cap.read()
print 'Read a new frame: ', success
params = []
params.append(cv.CV_IMWRITE_PXM_BINARY)
params.append(1)
cv2.imwrite(each_video_save_full_path + each_video_name + "_%d.ppm" % frame_count, frame, params)
frame_count = frame_count + 1
cap.release()
在最后,我将每一帧保存为 PPM 格式。因为我需要调用之前的 optical flow 论文中的 of
程序,来提取 optical flow image(光流图)。
保存时,根据 opencv 的 Doc:OpenCV 2.4.9 cv2.imwrite,其参数的指定方式如上。一开始在这里跌了好几个跟头,因为不知道如何将参数正确的指定。