【AI】PyTorch入门(五):构建神经模型

106 篇文章 69 订阅 ¥69.90 ¥99.00
本文介绍了PyTorch中构建神经网络的基础,包括nn.Flatten的展开操作、nn.Linear的线性变化、nn.ReLU激活函数、nn.Sequential顺序容器、nn.Softmax的使用,以及参数模型的概览。
摘要由CSDN通过智能技术生成

AI学习目录汇总

1、简述

torch.nn命名空间提供了构建自己的神经网络所需的所有构建模块,PyTorch中的每个模块都是 nn.Module 的子类。
神经网络由各种模块组成,它本身也是模块,也就是说神经网络是一个嵌套结构,这种嵌套结构方便构建和管理复杂的架构。

2、网络层详解

创建一个简单网络,并打印…

import torch
from torch import nn

device = "cuda" if torch.cuda.is_available() else "cpu"

class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
          
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郭老二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值