例3:
C
被分成
k
个两两不相交的子集
那么
通产整数
k
称为随机试验终止方式的总数,整数
为了说明等可能情况,我们给出一些基本的计数法则,这些通常会在基本代数课程中讨论,为了后文的讲解,我们这里给出大概介绍。
注3:
假设我们有两个试验,第一个有
m
个结果,第二个有
令
A
是
接下来假设顺序不重要,所以我们不在计算排列的个数,我们想计算从
A
中取
我们经常有属于组合而不是子集,所以我们说从
n
个事物构成的集合中取
如果我们扩展二项式
就会得到
因为对于
a
的
例4: 从52张扑克牌中随机抽一张,样本空间 C 是 k=52 种结果的并,可以假设每种结果的概率是 152 。如果 E1 表示抽到黑桃,那么 P(E1)=1352=14 ,因为有 r1=13 张黑桃;即 14 是从牌中抽到黑桃的概率。如果 E1 表示抽到国王,那么 P(E2)=452=113 ,因为有 r2=4 张国王;即 113 是从牌中抽到国王的概率。这些计算都非常容易,因为确定 r,k 的值非常容易。
然而,现在不取一张,而是随机抽五张,顺序不重要,那么根据前面的组合可知有
(525)
种可能。现在我们计算一些比较有趣的情况,令
E1
表示同花色,那么有
(41)=4
种同花色的情况,对于每种花色有
(135)
种可能的结果;因此利用乘法法则可得
假设
E2
是三张为国王,两张为王后的情况,那么选国王有
(43)
种可能,选王后有
(42)
种可能,因此
E2
的概率为
前面的例子让我们看到,我们是可以定义概率集合函数的,即集合函数需要满足定义2的要求。假设我们的空间
C
由
k
个不同的点组成,目前考虑一维空间。如果随机试验每个结果是等可能的,我们给每个点分配
为了说明,我们取 C={1,2,3,4,5,6},x∈C,f(x)=16 ,这个概率集合函数就满足定义2。
我们用概率的另一性质来结束本次主题。考虑递增的事件序列 {Cn} ,即 Cn⊂Cn+1 ,此时我们写 limn→∞Cn=∪∞n=1Cn ,考虑极限 limn→∞P(Cn) ,问题是 P 与极限可以交换吗?下面的定理说明答案是可以,结论对递增序列同样满足。因为可交换,这个定义有时称为概率的连续性定理。
令
{Cn}
是递减的事件序列,那么
证明:
我们只证明第一个,第二个同理可证。定义集合如下:
R1=C1,n>1
时
Rn=Cn∩Ccn−1
。由此可得
∪∞n=1Cn=∪∞n=1Rn,m≠n
时
Rm∩Rn=ϕ
,而且
P(Rn)=P(Cn)−P(Cn−1)
,应用概率论第三公理得到下面的等式:
证毕。 ||
另一个对任意并很有用的结论为:
定理7:
(布尔不等式)令
{Cn}
是任意的事件序列,那么
证明:
令
Dn=∪ni=1Ci
,那么
{Dn}
是递增序列且区域
∪∞n=1Cn
。另外对于所有的
j,Dj=Dj−1∪Cj
,因此根据定理5得
即
现在用
Di
代替
Ci
,利用定理6的结论以及
P(C1)=P(D1)
可得
证毕。 ||