漫步数理统计四——概率集合函数(下)

3 C 被分成 k 个两两不相交的子集C1,C2,,Ck,并且这 k 个子集的并是C,那么事件 C1,c2,,Ck 是相互互斥且是穷举的。假设某个随机试验满足这样的特性,并且事件 Ck,i=1,2,,k 概率相同,即 P(Ci)=1/k,i=1,2,,k ;我们经常说事件 C1,C2,,Ck 是等可能的。令事件 E r个事件的并即

E=C1C2Cr,rk

那么

P(E)=P(C1)+P(C2)++P(Cr)=rk

通产整数 k 称为随机试验终止方式的总数,整数r称为有利于事件 E 的总数,因此用这个术语表述就是,P(E)等于有利于事件 E 的总数除以试验终止的总数。为了强调给事件E 分配概率为 r/k ,我们必须假设互斥事件 C1,C2,,Ck 有相同的概率 1/k ,这个等可能事件的假设是我们模型的一部分,显然这个假设并非对所有情况都满足。

为了说明等可能情况,我们给出一些基本的计数法则,这些通常会在基本代数课程中讨论,为了后文的讲解,我们这里给出大概介绍。

3 假设我们有两个试验,第一个有 m 个结果,第二个有n个结果。现在将这两个试验组合起来,先后进行这两个试验,那么我们就有 mn 个有序对,这就是乘法法则或 mn 法则,它很容易扩展到更多的情况。

A n个元素组成的集合,假设我们对 k 元感兴趣,k 元的分量都是 A 的元素,那么利用扩展的乘法法则我们可以得到nnn=nk k 元。假设kn,且 k 元的分量是A中不同的元素组成的,那么第一个分量有 n 种选择,第二个分量有n1种选择, ,第 k 个分量有n(k1)种选择,因此利用乘法法则,存在 n(n1)(n(k1)) k 元。我们称这种k元是排列,用符号 Pnk 表示 n 个元素中取k个排列的总数,公式为:

Pnk=n(n1)(n(k1))=n!(nk)!

接下来假设顺序不重要,所以我们不在计算排列的个数,我们想计算从 A 中取k个元素子集的个数,我们用符号 (nk) 表示这种集合的总数。考虑 A 中取k个元素子集,根据排列规则可得 Pkk=k(k1)1 中排列,进一步所有这种排列与其他 k 个元素子集生成的排列是不同的,对于每个由k个不同元素生成的排列肯定是这些子集中的一个生成,因此我们需要说明 Pnk=(nk)k! ;即

(nk)=n!k!(nk)!

我们经常有属于组合而不是子集,所以我们说从 n 个事物构成的集合中取k个事物有 (nk) 种组合方式,另一个常用的符号是 Cnk

如果我们扩展二项式

(a+b)n=(a+b)(a+b)(a+b)

就会得到

(a+b)n=k=0n(nk)akbnk

因为对于 a k次幂,我们有 (nk) 种选择方式,所以 (nk) 也称为二项式系数。

4: 从52张扑克牌中随机抽一张,样本空间 C k=52 种结果的并,可以假设每种结果的概率是 152 。如果 E1 表示抽到黑桃,那么 P(E1)=1352=14 ,因为有 r1=13 张黑桃;即 14 是从牌中抽到黑桃的概率。如果 E1 表示抽到国王,那么 P(E2)=452=113 ,因为有 r2=4 张国王;即 113 是从牌中抽到国王的概率。这些计算都非常容易,因为确定 r,k 的值非常容易。

然而,现在不取一张,而是随机抽五张,顺序不重要,那么根据前面的组合可知有 (525) 种可能。现在我们计算一些比较有趣的情况,令 E1 表示同花色,那么有 (41)=4 种同花色的情况,对于每种花色有 (135) 种可能的结果;因此利用乘法法则可得

P(E1)=(41)(135)(525)=412872598960=0.00198

假设 E2 是三张为国王,两张为王后的情况,那么选国王有 (43) 种可能,选王后有 (42) 种可能,因此 E2 的概率为

P(E2)=(43)(42)/(525)=0.0000093

前面的例子让我们看到,我们是可以定义概率集合函数的,即集合函数需要满足定义2的要求。假设我们的空间 C k 个不同的点组成,目前考虑一维空间。如果随机试验每个结果是等可能的,我们给每个点分配1/k,那么对于 CC

P(C)=Ck=xCf(x)f(x)=1k,xC

为了说明,我们取 C={1,2,3,4,5,6},xC,f(x)=16 ,这个概率集合函数就满足定义2。

我们用概率的另一性质来结束本次主题。考虑递增的事件序列 {Cn} ,即 CnCn+1 ,此时我们写 limnCn=n=1Cn ,考虑极限 limnP(Cn) ,问题是 P 与极限可以交换吗?下面的定理说明答案是可以,结论对递增序列同样满足。因为可交换,这个定义有时称为概率的连续性定理。

6 {Cn} 是递增的事件序列,那么

limnP(Cn)=P(limnCn)=P(n=1)

{Cn} 是递减的事件序列,那么

limnP(Cn)=P(limnCn)=P(n=1)

我们只证明第一个,第二个同理可证。定义集合如下: R1=C1,n>1 Rn=CnCcn1 。由此可得 n=1Cn=n=1Rn,mn RmRn=ϕ ,而且 P(Rn)=P(Cn)P(Cn1) ,应用概率论第三公理得到下面的等式:

P[limnCn]=P(n=1Cn)=P(n=1Rn)=n=1P(Rn)=limnj=1nP(Rj)=limn{P(C1)+j=2n[P(Cj)P(Cj1)]}=limnP(Cn)

证毕。 ||

另一个对任意并很有用的结论为:

7 (布尔不等式)令 {Cn} 是任意的事件序列,那么

P(n=1Cn)n=1P(Cn)

Dn=ni=1Ci ,那么 {Dn} 是递增序列且区域 n=1Cn 。另外对于所有的 j,Dj=Dj1Cj ,因此根据定理5得

P(Dj)P(Dj1)+P(Cj)


P(Dj)P(Dj1)P(Cj)

现在用 Di 代替 Ci ,利用定理6的结论以及 P(C1)=P(D1) 可得

P(n=1Cn)=P(n=1Dn)=limnP(D1)+j=2n[P(Dj)P(Dj1)]limnj=1nP(Cj)=n=1P(Cn)

证毕。 ||

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值