漫步数理统计三十——依概率收敛

本篇博文我们将正式地陈述一系列随机变量靠近某个随机变量。

1 {Xn} 是一系列随机变量, X 是定义在样本空间上的随机变量。我们说Xn依概率收敛到 X ,如果对于ϵ>0

limnP[|XnX|ϵ]=0

或者等价的

limnP[|XnX|<ϵ]=1

如果成立,我们一般写成

XnPX

如果 XnPX ,我们常说 XnX 的差收敛到0。极限随机变量 X 经常是一个常数;例如X是一个退化的随机变量。

说明依概率收敛的一种方法是用切比雪夫定理,具体会在下面的证明中给出,为了强调我们是一系列随机变量,我们在随机变量上给出下标,像 X¯ 写成 X¯n

1 (弱大数定理) {Xn} 是一系列独立同分布的随机变量,均值为 μ ,方差为 σ2< X¯n=n1ni=1Xi ,那么

X¯nPμ

回忆一下 X¯n 的均值与方差分别为 μ,σ2/n ,因此根据切比雪夫定理,对于任意的 ϵ>0

P[|X¯μ|ϵ]=P[|X¯μ|](ϵn/σ)(σ/n)σ2nϵ20

||

这个定理说明,当 n 取向时, X¯ 分布的所有质量收敛到 μ 。也就时候对于大的 n X¯接近 μ ,但是多接近呢?例如如果我们用 X¯n 估计 μ ,那么估计误差是多少?这个问题留到下篇博文讲解。

还有一个强大数定理,它弱化了定理1的假设:随机变量 Xi 独立且都有有限的均值 μ ,因此强大数定理是一阶矩定理,而弱大数定理需要二阶矩存在。

还有些关于依概率收敛的定理,我们在后面会用到,首先是两个关于依概率收敛对线性封闭的定理。

2 假设 XnPX,YnPY ,那么 Xn+YnPX+Y

ϵ>0 已给定,利用三角不等式可得

|XnX|+|YnY||(Xn+Yn)(X+Y)|ϵ

因为 P 是单调的,所以我们有

P[(Xn+Yn)(X+Y)ϵ]P[|XnX|+|YnY|ϵ]P[|XnX|ϵ/2]+P[|YnY|ϵ/2]

根据定理的假设,后两项收敛到0,从而得证。 ||

3 假设 XnPX a 是一个常数,那么aXnPaX

如果 a=0 ,结论明显成立。假设 a0 ,令 ϵ>0 ,那么

P[|aXnaX|ϵ]=P[|a||XnX|ϵ]=P[|XnX|ϵ/|a|]

根据假设最后一项趋于0。 ||

4 假设 XnPa 且函数 g a点连续,那么 g(Xn)Pg(a)

ϵ>0 ,那么因为 g a点连续,所以存在 δ>0 使得如果 |xa|<δ,|g(x)g(a)|<ϵ ,所以

|g(x)g(a)|ϵ|xa|δ

代入 Xn 可得

P[|g(Xn)g(a)|ϵ]P[|Xna|δ]

根据假设,最后一项在 n 时趋于0,得证。 ||

这个定理给出了许多有用的结论。例如,如果 XnPa ,那么

X2n1/XnXnPa2P1/a,a0Pa,a0

实际上,如果 XnPX g 是连续函数,那么g(Xn)Pg(X),下面的定理就用了这个结论。

5 假设 XnPX,YnPY ,那么 XnYnPXY

利用上面的结论,我们有

XnYn=12X2n+12Y2n12(XnYn)2P12X2+12Y212(XY)2=XY

现在回到采样与统计的讨论,考虑这么一种情况,随机变量 X 的分布有未知参数θΩ,我们要基于样本找到一个统计量来估计 θ ,上篇博文我们介绍了无偏性,现在介绍一致性:
2 X 是cdf为F(x,θ),θΩ的随机变量, X1,,Xn X 分布的样本且Tn表示一个统计量。我们说 Tn θ 的一致估计,如果

TnPθ

如果 X1,,Xn 是有限均值 μ 和方差 σ2 分布的随机样本,那么根据弱大数定理,样本均值 X¯ μ 的一致估计。

1 X1,,Xn 表示均值为 μ 方差为 σ2 分布的随机样本,定理1说明 X¯Pμ 。为了说明样本均值依概率收敛到 σ2 ,假设 E[X41]< ,这样的话 var(S2)< 。根据前面的结论可得:

S2n=1n1i=1n(XiX¯n)2=nn1(1ni=1nX2iX¯2n)P1[E(X21)μ2]=σ2

因此样本方差是 σ2 的一致估计。

不像上面的例子,有时候我们可以用分布函数得出收敛,如下例所示:

2 X1,,Xn 是均匀分布 (0,θ) 的随机样本, Yn=max{X1,,Xn} ,从 Yn 的cdf中很容易看出 YnPθ 且样本最大值是 θ 的一致估计。注意无偏估计 ((n+1)/n)Yn 也是一致的。

接下里扩展下例2,根据定理1可得 X¯n θ/2 的一致估计,所以 2X¯n θ 的一致估计,注意 Yn,2X¯n 依概率收敛到 θ 的区别。对 Yn 而言我们用的是 Yn 的cdf,但对 2X¯n 而言,我们用的是弱大数定理。事实上 2X¯n 的cdf非常复杂。在许多情况下,统计量的cdf无法得到但是我们可以用近似理论来建立结论。其实还有许多其他 θ 的估计量,那么哪个是最好的呢?后面的文章会继续介绍。

一致性是估计量非常重要的性质,当样本数量增大时差的估计量不可能靠近目标。注意这对无偏性是不成立的。例如我们不用样本方差来估计 σ2 ,假设用 V=n1ni=1(XiX¯)2 ,那么 V σ2的一致估计,但是是有偏的,因为 E(V)=(n1)σ2/n ,所以 V 的偏置为σ2/n,当 n 时该项消失。

  • 21
    点赞
  • 65
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
引用中给出了依概率收敛的定义,即$\lim\limits_{n\rightarrow\infty}P\{|X_n-X|\ge\epsilon\}=0$,记为$X_n\xrightarrow{P}X$。这个定义表示对于给定的任意小的正数$\epsilon$,随着$n$趋向于无穷大,随机变量$X_n$以概率$1$接近于$X$。 引用中给出了依概率收敛的证明方法。证明的过程是通过对累积分布函数$FX_n(x)$进行分析来得到的。具体地,证明使用了事件的交集和并集的性质,以及随机变量$X_n$和$X$之间的距离$|X_n-X|$。根据这些性质,我们可以得到$FX_n(x)$与$FX(x)$之间的关系,并通过控制$FX_n(x)$和$FX(x)$之间的差异来证明依概率收敛的定义。 综上所述,依概率收敛是一种随机变量序列以概率$1$收敛于某个随机变量的性质。它可以通过分析累积分布函数来进行证明。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [读书笔记:收敛性 ← 随机过程](https://blog.csdn.net/hnjzsyjyj/article/details/123285972)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [漫步数理统计三十一——依分布收敛](https://blog.csdn.net/u010182633/article/details/73252655)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值