http://www.icourses.cn 南开大学《抽象代数》
§1.4 群的同态与同构 \color{blue}\text{\S 1.4 群的同态与同构} §1.4 群的同态与同构
同态与同构是抽象代数研究代数体系的重要工具。一旦证明了一个代数体系与已知的某代数体系同构,我们就可以在抽象的意义下把它看成是已知的那个代数体系。抽象代数最基本最重要的课题,就是搞清楚各种代数体系在同构意义下的分类。群的同态与同构,则是研究群与群之间关系的重要工具和手段。
定
义
1.4.1
设
{
G
1
;
⋅
}
与
{
G
2
;
∗
}
是
两
个
群
,
f
是
G
1
到
G
2
的
一
个
映
射
,
如
果
{\color{blue}定义1.4.1\quad}设 \lbrace G_1; \cdot \rbrace 与 \lbrace G_2; * \rbrace 是两个群,f是G_1到G_2的一个映射,如果
定义1.4.1设{G1;⋅}与{G2;∗}是两个群,f是G1到G2的一个映射,如果
f
(
a
⋅
b
)
=
f
(
a
)
∗
f
(
b
)
,
∀
a
,
b
∈
G
1
.
\qquad f(a \cdot b) = f(a) * f(b), \forall a, b \in G_1.
f(a⋅b)=f(a)∗f(b),∀a,b∈G1.
则
称
f
是
G
1
到
G
2
的
一
个
同
态
映
射
,
简
称
同
态
.
则称f是G_1到G_2的一个{\color{blue}同态映射},简称{\color{blue}同态}.
则称f是G1到G2的一个同态映射,简称同态.
若
G
1
与
G
2
是
同
一
个
群
,
则
称
f
是
自
同
态
.
若
同
态
f
还
是
单
射
,
则
称
f
是
单
同
态
;
若G_1与G_2是同一个群,则称f是{\color{blue}自同态}.若同态f还是单射,则称f是{\color{blue}单同态};
若G1与G2是同一个群,则称f是自同态.若同态f还是单射,则称f是单同态;
若
同
态
f
还
是
满
射
,
则
称
f
是
满
同
态
.
当
f
是
满
同
态
时
,
称
G
1
与
G
2
是
同
态
的
,
记
为
若同态f还是满射,则称f是{\color{blue}满同态}.当f是满同态时,称G_1与G_2是同态的,记为
若同态f还是满射,则称f是满同态.当f是满同态时,称G1与G2是同态的,记为
G
1
∼
G
2
.
若
同
态
f
还
是
双
射
(
双
射
即
可
逆
映
射
,
也
即
是
单
射
又
是
满
射
)
,
则
称
f
是
G_1 \sim G_2.若同态f还是双射(双射即可逆映射,也即是单射又是满射),则称f是
G1∼G2.若同态f还是双射(双射即可逆映射,也即是单射又是满射),则称f是
G
1
到
G
2
的
一
个
同
构
映
射
,
简
称
同
构
,
此
时
称
群
G
1
与
G
2
是
同
构
的
,
记
为
G
1
≃
G
2
.
G_1到G_2的一个{\color{blue}同构映射},简称{\color{blue}同构},此时称群G_1与G_2是同构的,记为G_1 \simeq G_2.
G1到G2的一个同构映射,简称同构,此时称群G1与G2是同构的,记为G1≃G2.
例
1
设
V
是
数
域
P
上
的
n
维
线
性
空
间
,
f
是
V
的
一
般
线
性
群
G
L
(
V
)
到
P
中
非
零
元
的
{\color{blue}例1 \quad}设V是数域 \mathbb{P}上的n维线性空间,f是V的一般线性群GL(V)到 \mathbb{P}中非零元的
例1设V是数域P上的n维线性空间,f是V的一般线性群GL(V)到P中非零元的
乘
法
群
{
P
∗
;
⋅
}
的
映
射
,
乘法群 \lbrace \mathbb{P}^{*}; \cdot \rbrace的映射,
乘法群{P∗;⋅}的映射,
f
(
A
)
=
det
(
A
)
,
∀
A
∈
G
L
(
V
)
.
\qquad f(\mathcal{A}) = \det (\mathcal{A}), \forall \mathcal{A} \in GL(V).
f(A)=det(A),∀A∈GL(V).
则
f
是
满
同
态
.
这
是
因
为
两
个
线
性
变
换
乘
积
的
行
列
式
等
于
线
性
变
换
行
列
式
的
乘
积
。
则f是满同态.这是因为两个线性变换乘积的行列式等于线性变换行列式的乘积。
则f是满同态.这是因为两个线性变换乘积的行列式等于线性变换行列式的乘积。
例
2
设
V
是
n
维
实
线
性
空
间
,
则
G
L
(
V
)
≃
G
L
n
(
R
)
{\color{blue}例2 \quad}设V是n维实线性空间,则GL(V) \simeq GL_n(\R)
例2设V是n维实线性空间,则GL(V)≃GLn(R)
证
:
在
V
中
取
一
组
基
{
α
1
,
⋯
 
,
α
n
}
,
∀
A
∈
G
L
(
V
)
,
记
A
在
这
组
基
下
的
方
阵
为
f
(
A
)
,
则
根
据
线
性
代
数
中
的
结
论
知
{\color{blue}证:}在V中取一组基\lbrace \alpha_1, \cdots,\alpha_n \rbrace, \forall \mathcal{A} \in GL(V),记 \mathcal{A} 在这组基下的方阵为f(\mathcal{A}),则根据线性代数中的结论知
证:在V中取一组基{α1,⋯,αn},∀A∈GL(V),记A在这组基下的方阵为f(A),则根据线性代数中的结论知
f
:
G
L
(
V
)
→
G
L
n
(
R
)
\quad f:GL(V) \to GL_n(\R)
f:GL(V)→GLn(R)
是
双
射
,
且
是双射,且
是双射,且
f
(
A
⋅
B
)
=
f
(
A
)
⋅
f
(
B
)
,
∀
A
,
B
∈
G
L
(
V
)
.
\quad f(\mathcal{A} \cdot \mathcal{B}) = f(\mathcal{A}) \cdot f(\mathcal{B}), \forall \mathcal{A}, \mathcal{B} \in GL(V).
f(A⋅B)=f(A)⋅f(B),∀A,B∈GL(V).
根
据
定
义
1.4.1
,
f
是
群
G
L
(
V
)
到
G
L
n
(
R
)
的
一
个
同
构
映
射
,
故
G
L
(
V
)
≃
G
L
n
(
R
)
.
根据定义1.4.1,f是群GL(V)到GL_n(\R)的一个同构映射,故GL(V) \simeq GL_n(\R).
根据定义1.4.1,f是群GL(V)到GLn(R)的一个同构映射,故GL(V)≃GLn(R).
例
3
设
G
是
一
个
群
,
H
⊲
G
,
记
π
是
G
到
G
/
H
的
映
射
,
{\color{blue}例3\quad}设G是一个群, H \lhd G, 记 \pi 是G到G/H的映射,
例3设G是一个群,H⊲G,记π是G到G/H的映射,
π
(
g
)
=
g
H
,
∀
g
∈
G
.
\quad \pi (g) = gH, \forall g \in G.
π(g)=gH,∀g∈G.
则
π
是
满
同
态
,
称
π
为
群
G
到
商
群
G
/
H
的
自
然
同
态
.
则 \pi 是满同态,称 \pi 为群G到商群G/H的{\color{blue}自然同态}.
则π是满同态,称π为群G到商群G/H的自然同态.
命
题
1.4.1
若
f
是
群
G
1
到
群
G
2
的
同
态
,
g
是
群
G
2
到
群
G
3
的
同
态
,
{\color{blue}命题1.4.1\quad}{\color{green}若f是群G_1到群G_2的同态,g是群G_2到群G_3的同态,}
命题1.4.1若f是群G1到群G2的同态,g是群G2到群G3的同态,
则
g
f
是
G
1
到
G
3
的
同
态
.
若
f
,
g
都
是
满
(
单
)
同
态
,
则
g
f
也
是
满
(
单
)
同
态
.
{\color{green}则gf是G_1到G_3的同态.若f,g都是满(单)同态,则gf也是满(单)同态.}
则gf是G1到G3的同态.若f,g都是满(单)同态,则gf也是满(单)同态.
若
f
,
g
都
是
同
构
,
则
g
f
也
是
同
构
,
若
f
是
同
构
,
则
f
−
1
也
是
同
构
.
{\color{green}若f,g都是同构,则gf也是同构,若f是同构,则f^{-1}也是同构.}
若f,g都是同构,则gf也是同构,若f是同构,则f−1也是同构.
命
题
1.4.2
设
f
是
群
G
1
到
群
G
2
的
同
态
,
e
1
,
e
2
分
别
为
G
1
,
G
2
的
幺
元
,
{\color{blue}命题1.4.2\quad}{\color{green}设f是群G_1到群G_2的同态,e_1,e_2分别为G_1,G_2的幺元,}
命题1.4.2设f是群G1到群G2的同态,e1,e2分别为G1,G2的幺元,
则
有
f
(
e
1
)
=
e
2
即
∀
a
∈
G
1
,
f
(
a
−
1
)
=
f
(
a
)
−
1
.
{\color{green}则有f(e_1)=e_2即\forall a \in G_1,f(a^{-1})={f(a)}^{-1}.}
则有f(e1)=e2即∀a∈G1,f(a−1)=f(a)−1.
证
由
f
(
e
1
)
=
f
(
e
1
e
1
)
=
f
(
e
1
)
f
(
e
1
)
,
两
边
左
乘
f
(
e
1
)
−
1
,
得
f
(
e
1
)
=
e
2
.
{\color{blue}证\quad}由f(e_1)=f(e_1e_1)=f(e_1)f(e_1),两边左乘{f(e_1)}^{-1},得f(e_1)=e_2.
证由f(e1)=f(e1e1)=f(e1)f(e1),两边左乘f(e1)−1,得f(e1)=e2.
∀
a
∈
G
1
,
f
(
a
−
1
)
f
(
a
)
=
f
(
a
−
1
a
)
=
f
(
e
1
)
=
e
2
,
故
f
(
a
−
1
)
=
f
(
a
)
−
1
.
\forall a \in G_1,f(a^{-1})f(a)=f(a^{-1}a)=f(e_1)=e_2,故f(a^{-1})={f(a)}^{-1}.
∀a∈G1,f(a−1)f(a)=f(a−1a)=f(e1)=e2,故f(a−1)=f(a)−1.
命
题
1.4.3
设
f
是
群
G
1
到
G
2
的
同
态
,
H
<
G
1
,
则
H
的
像
集
合
f
(
H
)
也
是
G
2
的
子
群
,
{\color{blue}命题1.4.3\quad}{\color{green}设f是群G_1到G_2的同态,H < G_1,则H的像集合f(H)也是G_2的子群,}
命题1.4.3设f是群G1到G2的同态,H<G1,则H的像集合f(H)也是G2的子群,
特
别
,
f
(
G
1
)
<
G
2
.
{\color{green}特别,f(G_1) < G_2.}
特别,f(G1)<G2.
证
:
e
2
=
f
(
e
1
)
∈
f
(
H
)
,
知
f
(
H
)
非
空
.
∀
a
2
,
b
2
∈
f
(
H
)
,
有
a
1
,
b
1
∈
H
使
f
(
a
1
)
=
a
2
,
f
(
b
1
)
=
b
2
,
于
是
a
2
b
2
−
1
=
f
(
a
1
)
f
(
b
1
)
−
1
=
f
(
a
1
)
f
(
b
1
−
1
)
=
f
(
a
1
b
1
−
1
)
∈
f
(
H
)
.
据
定
理
1.3.1
,
f
(
H
)
<
G
2
.
{\color{blue}证:}e_2=f(e_1) \in f(H),知f(H)非空.\forall a_2,b_2 \in f(H),有a_1,b_1 \in H使f(a_1) = a_2, f(b_1)=b_2,于是a_2b_2^{-1}=f(a_1){f(b_1)}^{-1}=f(a_1)f(b_1^{-1})=f(a_1b_1^{-1}) \in f(H).据定理1.3.1,f(H) < G_2.
证:e2=f(e1)∈f(H),知f(H)非空.∀a2,b2∈f(H),有a1,b1∈H使f(a1)=a2,f(b1)=b2,于是a2b2−1=f(a1)f(b1)−1=f(a1)f(b1−1)=f(a1b1−1)∈f(H).据定理1.3.1,f(H)<G2.
定
义
1.4.2
设
f
是
群
G
1
到
群
G
2
的
同
态
,
则
G
2
的
幺
元
e
2
的
完
全
原
像
{
a
∈
G
1
∣
f
(
a
)
=
e
2
}
称
为
同
态
映
射
f
的
核
,
记
为
ker
f
.
{\color{blue}定义1.4.2\quad}设f是群G_1到群G_2的同态,则G_2的幺元e_2的完全原像\lbrace a \in G_1 | f(a) = e_2 \rbrace称为{\color{blue}同态映射f的核},记为\ker f.
定义1.4.2设f是群G1到群G2的同态,则G2的幺元e2的完全原像{a∈G1∣f(a)=e2}称为同态映射f的核,记为kerf.
例
4
设
G
是
群
,
H
⊲
G
,
π
是
G
到
G
/
H
的
自
然
同
态
,
则
ker
π
=
H
.
{\color{blue}例4\quad}设G是群,H \lhd G, \pi 是G到G/H的自然同态,则 \ker \pi = H.
例4设G是群,H⊲G,π是G到G/H的自然同态,则kerπ=H.
命
题
1.4.4
设
f
是
群
G
1
到
群
G
2
的
同
态
,
则
ker
f
⊲
G
1
.
{\color{blue}命题1.4.4\quad}{\color{green}设f是群G_1到群G_2的同态,则\ker f \lhd G_1.}
命题1.4.4设f是群G1到群G2的同态,则kerf⊲G1.
证
:
记
e
1
,
e
2
分
别
为
G
1
,
G
2
的
幺
元
,
因
e
1
∈
ker
f
,
故
ker
f
非
空
.
∀
a
,
b
∈
ker
f
,
有
{\color{blue}证:}记e_1,e_2分别为G_1,G_2的幺元,因e_1 \in \ker f,故 \ker f 非空.\forall a,b \in \ker f,有
证:记e1,e2分别为G1,G2的幺元,因e1∈kerf,故kerf非空.∀a,b∈kerf,有
f
(
a
b
−
1
)
=
f
(
a
)
f
(
b
−
1
)
=
f
(
a
)
f
(
b
)
−
1
=
e
2
e
2
−
1
=
e
2
.
\quad f(ab^{-1}) = f(a)f(b^{-1}) = f(a){f(b)}^{-1}=e_2e_2^{-1}=e_2.
f(ab−1)=f(a)f(b−1)=f(a)f(b)−1=e2e2−1=e2.
故
a
b
−
1
∈
ker
f
.
据
定
理
1.3.1
,
ker
f
<
G
1
.
又
∀
g
∈
G
1
,
a
∈
ker
f
,
有
故ab^{-1} \in \ker f.据定理1.3.1, \ker f < G_1.又\forall g \in G_1,a \in \ker f,有
故ab−1∈kerf.据定理1.3.1,kerf<G1.又∀g∈G1,a∈kerf,有
f
(
g
a
g
−
1
)
=
f
(
g
)
f
(
a
)
f
(
g
−
1
)
=
f
(
g
)
e
2
f
(
g
)
−
1
=
e
2
.
\quad f(gag^{-1})=f(g)f(a)f(g^{-1})=f(g)e_2{f(g)}^{-1}=e_2.
f(gag−1)=f(g)f(a)f(g−1)=f(g)e2f(g)−1=e2.
故
g
a
g
−
1
∈
ker
f
.
据
定
义
1.3.4
,
ker
f
⊲
G
1
.
故gag^{-1} \in \ker f.据定义1.3.4,\ker f \lhd G_1.
故gag−1∈kerf.据定义1.3.4,kerf⊲G1.
命
题
1.4.5
设
f
是
群
G
1
到
群
G
2
的
同
态
,
则
f
是
单
同
态
  
⟺
  
ker
f
=
{
e
1
}
,
{\color{blue}命题1.4.5\quad}{\color{green}设f是群G_1到群G_2的同态,则f是单同态 \iff \ker f = \lbrace e_1 \rbrace,}
命题1.4.5设f是群G1到群G2的同态,则f是单同态⟺kerf={e1},
这
里
e
1
是
G
1
的
幺
元
.
{\color{green}这里e_1是G_1的幺元.}
这里e1是G1的幺元.
证
:
“
⇒
”
:
据
命
题
1.4.2
知
,
f
(
e
1
)
=
e
2
,
故
{
e
1
}
⊆
ker
f
,
又
∀
a
∈
ker
f
,
f
(
a
)
=
e
2
=
f
(
e
1
)
,
因
f
是
单
射
,
a
=
e
1
,
故
ker
f
⊆
{
e
1
}
.
{\color{blue}证:}“\Rightarrow”:据命题1.4.2知,f(e_1)=e_2,故\lbrace e_1 \rbrace \subseteq \ker f,又\forall a \in \ker f,f(a) = e_2 = f(e_1),因f是单射,a=e_1,故\ker f \subseteq \lbrace e_1 \rbrace.
证:“⇒”:据命题1.4.2知,f(e1)=e2,故{e1}⊆kerf,又∀a∈kerf,f(a)=e2=f(e1),因f是单射,a=e1,故kerf⊆{e1}.
“
⇐
”
:
若
f
(
a
)
=
f
(
b
)
,
a
,
b
∈
G
1
,
则
f
(
a
b
−
1
)
=
f
(
a
)
⋅
f
(
b
)
−
1
=
e
2
,
故
a
b
−
1
∈
ker
f
,
现
ker
f
=
{
e
1
}
,
故
a
b
−
1
=
e
1
,
即
a
=
b
,
故
f
是
单
同
态
.
“\Leftarrow”:若f(a)=f(b),a,b \in G_1,则f(ab^{-1})=f(a)\cdot {f(b)}^{-1} = e_2,故ab^{-1} \in \ker f,现\ker f = \lbrace e_1 \rbrace,故ab^{-1}=e_1,即a=b,故f是单同态.
“⇐”:若f(a)=f(b),a,b∈G1,则f(ab−1)=f(a)⋅f(b)−1=e2,故ab−1∈kerf,现kerf={e1},故ab−1=e1,即a=b,故f是单同态.
定
理
1.4.6
(
群
的
同
态
基
本
定
理
)
设
f
是
群
G
1
到
群
G
2
的
满
同
态
映
射
,
则
G
1
/
ker
f
≃
G
2
.
{\color{blue}定理1.4.6(群的同态基本定理)\quad}{\color{green}设f是群G_1到群G_2的满同态映射,则G_1/\ker f \simeq G_2.}
定理1.4.6(群的同态基本定理)设f是群G1到群G2的满同态映射,则G1/kerf≃G2.
证
:
记
N
=
ker
f
,
据
命
题
1.4.4
知
,
N
⊲
G
1
.
令
{\color{blue}证:}记N = \ker f,据命题1.4.4知,N \lhd G_1.令
证:记N=kerf,据命题1.4.4知,N⊲G1.令
ϕ
:
G
1
/
N
→
G
2
\qquad \phi:G_1/N \to G_2
ϕ:G1/N→G2
g
N
↦
f
(
g
)
\qquad gN \mapsto f(g)
gN↦f(g)
则
ϕ
是
G
1
/
N
到
G
2
的
映
射
,
因
若
g
1
N
=
g
2
N
,
g
1
,
g
2
∈
G
1
,
据
推
论
1.3.5
知
g
1
−
1
g
2
∈
N
,
故
f
(
g
1
−
1
g
2
)
=
e
2
,
即
f
(
g
1
)
−
1
f
(
g
2
)
=
e
2
,
故
f
(
g
1
)
=
f
(
g
2
)
.
这
表
明
G
1
/
N
中
任
一
元
素
在
ϕ
下
有
唯
一
的
像
,
所
以
ϕ
是
映
射
.
则\phi是G_1/N到G_2的映射,因若g_1N=g_2N,g_1,g_2 \in G_1,据推论1.3.5知g_1^{-1}g_2 \in N,故f(g_1^{-1}g_2)=e_2,即{f(g_1)}^{-1}f(g_2)=e_2,故f(g_1)=f(g_2).这表明G_1/N中任一元素在\phi下有唯一的像,所以\phi是映射.
则ϕ是G1/N到G2的映射,因若g1N=g2N,g1,g2∈G1,据推论1.3.5知g1−1g2∈N,故f(g1−1g2)=e2,即f(g1)−1f(g2)=e2,故f(g1)=f(g2).这表明G1/N中任一元素在ϕ下有唯一的像,所以ϕ是映射.
其
次
,
上
边
一
段
可
以
逆
推
回
去
:
f
(
g
1
)
=
f
(
g
2
)
⇒
g
1
N
=
g
2
N
,
∀
g
1
,
g
2
∈
G
1
,
因
此
ϕ
是
单
射
.
其次,上边一段可以逆推回去:f(g_1)=f(g_2) \Rightarrow g_1N=g_2N,\forall g_1,g_2 \in G_1,因此\phi是单射.
其次,上边一段可以逆推回去:f(g1)=f(g2)⇒g1N=g2N,∀g1,g2∈G1,因此ϕ是单射.
再
由
f
是
满
射
,
知
ϕ
也
是
满
射
,
从
而
ϕ
是
双
射
.
再由f是满射,知\phi也是满射,从而\phi是双射.
再由f是满射,知ϕ也是满射,从而ϕ是双射.
∀
a
N
,
b
N
∈
G
/
N
,
由
f
是
同
态
,
有
\forall aN, bN \in G/N,由f是同态,有
∀aN,bN∈G/N,由f是同态,有
ϕ
(
a
N
⋅
b
N
)
=
ϕ
(
a
b
N
)
=
f
(
a
b
)
\phi(aN \cdot bN) = \phi(abN) = f(ab)
ϕ(aN⋅bN)=ϕ(abN)=f(ab)
=
f
(
a
)
f
(
b
)
=
ϕ
(
a
N
)
⋅
ϕ
(
b
N
)
,
\qquad = f(a)f(b) = \phi(aN) \cdot \phi(bN),
=f(a)f(b)=ϕ(aN)⋅ϕ(bN),
所
以
ϕ
还
是
同
态
映
射
,
于
是
ϕ
是
同
构
映
射
,
故
G
1
/
N
≃
G
2
.
所以\phi还是同态映射,于是\phi是同构映射,故G_1/N \simeq G_2.
所以ϕ还是同态映射,于是ϕ是同构映射,故G1/N≃G2.
这个定理的结论,是两个群同构,而在抽象的意义下,两个同构的群,是相同的群。所以,这一定理是很重要的,称为群的同态基本定理。
推
论
1.4.7
设
G
为
一
群
,
f
是
G
到
另
一
群
的
同
态
映
射
,
则
G
的
同
态
象
f
(
G
)
必
同
构
于
{\color{blue}推论1.4.7\quad}{\color{green}设G为一群,f是G到另一群的同态映射,则G的}{\color{blue}同态象}{\color{green}f(G)必同构于}
推论1.4.7设G为一群,f是G到另一群的同态映射,则G的同态象f(G)必同构于
G
的
商
群
G
/
ker
f
;
反
之
,
G
的
任
一
商
群
都
可
看
作
G
的
同
态
象
.
{\color{green}G的商群G/\ker f;反之,G的任一商群都可看作G的同态象.}
G的商群G/kerf;反之,G的任一商群都可看作G的同态象.
证
:
是
f
是
G
到
G
′
的
同
态
,
则
f
也
可
看
作
G
到
f
(
G
)
的
满
同
态
,
故
据
定
理
1.4.6
,
有
G
/
ker
f
≃
f
(
G
)
.
{\color{blue}证:}是f是G到G^{\prime}的同态,则f也可看作G到f(G)的满同态,故据定理1.4.6,有G/\ker f \simeq f(G).
证:是f是G到G′的同态,则f也可看作G到f(G)的满同态,故据定理1.4.6,有G/kerf≃f(G).
反
之
,
设
G
/
N
是
G
的
任
一
商
群
,
即
有
N
⊲
G
,
则
G
到
G
/
N
的
自
然
同
态
π
是
满
同
态
,
故
G
/
N
可
看
作
G
的
同
态
象
π
(
G
)
.
反之,设G/N是G的任一商群,即有N \lhd G,则G到G/N的自然同态\pi是满同态,故G/N可看作G的同态象\pi(G).
反之,设G/N是G的任一商群,即有N⊲G,则G到G/N的自然同态π是满同态,故G/N可看作G的同态象π(G).
两个群间的任一满同态映射,都可看作一个群到某一个商群上的自然同态;要找出一个群G的所有同态象,就相当于找出G的所有的商群,也就相当于找出G的所有正规子群.
定
理
1.4.8
设
f
是
群
G
1
到
群
G
2
的
满
同
态
,
N
=
ker
f
,
则
{\color{blue}定理1.4.8\quad}{\color{green}设f是群G_1到群G_2的满同态,N= \ker f,则}
定理1.4.8设f是群G1到群G2的满同态,N=kerf,则
①
f
建
立
了
G
1
中
包
含
N
的
子
群
与
G
2
中
子
群
间
的
双
射
;
{\color{green}①f建立了G_1中包含N的子群与G_2中子群间的双射;}
①f建立了G1中包含N的子群与G2中子群间的双射;
②
上
述
双
射
把
正
规
子
群
对
应
到
正
规
子
群
;
{\color{green}②上述双射把正规子群对应到正规子群;}
②上述双射把正规子群对应到正规子群;
③
若
H
⊲
G
1
,
N
⊆
H
,
则
G
1
/
H
≃
G
2
/
f
(
H
)
.
{\color{green}③若H \lhd G_1,N \subseteq H,则G_1/H \simeq G_2/f(H).}
③若H⊲G1,N⊆H,则G1/H≃G2/f(H).
推
论
1.4.9
设
G
是
群
,
N
⊲
G
,
π
是
G
到
G
/
N
的
自
然
同
态
,
则
π
建
立
了
G
中
包
含
N
{\color{blue}推论1.4.9\quad}{\color{green}设G是群,N \lhd G,\pi 是G到G/N的自然同态,则\pi建立了G中包含N}
推论1.4.9设G是群,N⊲G,π是G到G/N的自然同态,则π建立了G中包含N
的
子
群
与
G
/
N
的
子
群
间
的
双
射
,
而
且
把
正
规
子
群
对
应
到
正
规
子
群
.
又
若
H
⊲
G
,
{\color{green}的子群与G/N的子群间的双射,而且把正规子群对应到正规子群.又若H \lhd G,}
的子群与G/N的子群间的双射,而且把正规子群对应到正规子群.又若H⊲G,
N
⊆
H
,
则
G
/
H
≃
(
G
/
N
)
/
(
H
/
N
)
.
{\color{green}N \subseteq H,则G/H \simeq (G/N)/(H/N).}
N⊆H,则G/H≃(G/N)/(H/N).
从推论1.4.7知,一个群的同态象总与该群的某一商群同构,故在讨论满同态时,我们可以只考虑群到它的商群上的自然同态,而不失一般性。
下面定理中谈到的群G的子群H,不再有“包含同态核N”的限制。
定
理
1.4.10
设
G
是
群
,
N
⊲
G
,
π
是
G
到
G
/
N
的
自
然
同
态
,
H
<
G
,
则
{\color{blue}定理1.4.10\quad}{\color{green}设G是群,N \lhd G, \pi 是G到G/N的自然同态,H<G,则}
定理1.4.10设G是群,N⊲G,π是G到G/N的自然同态,H<G,则
①
H
N
是
G
中
包
含
N
的
子
群
,
且
H
N
=
π
−
1
(
π
(
H
)
)
.
{\color{green}①HN是G中包含N的子群,且HN = \pi^{-1}(\pi(H)).}
①HN是G中包含N的子群,且HN=π−1(π(H)).
即
H
N
是
H
在
π
映
射
下
的
象
集
合
π
(
H
)
的
完
全
原
象
π
−
1
(
π
(
H
)
)
.
{\color{green}即HN是H在\pi映射下的象集合\pi(H)的完全原象\pi^{-1}(\pi(H)).}
即HN是H在π映射下的象集合π(H)的完全原象π−1(π(H)).
②
(
H
∩
N
)
⊲
H
,
且
ker
(
π
∣
H
)
=
H
∩
N
.
{\color{green}②(H \cap N) \lhd H, 且 \ker (\pi |_{H}) = H \cap N.}
②(H∩N)⊲H,且ker(π∣H)=H∩N.
③
H
N
/
N
≃
H
/
(
H
∩
N
)
.
{\color{green}③HN/N \simeq H/(H \cap N).}
③HN/N≃H/(H∩N).
证
:
①
:
∀
h
1
,
h
2
∈
H
,
∀
n
1
,
n
2
∈
N
,
即
∀
h
1
n
1
,
h
2
n
2
∈
H
N
,
{\color{blue}证:}①: \forall h_1,h_2 \in H, \forall n_1,n_2 \in N, 即 \forall h_1n_1, h_2n_2 \in HN,
证:①:∀h1,h2∈H,∀n1,n2∈N,即∀h1n1,h2n2∈HN,
h
1
n
1
(
h
2
n
2
)
−
1
=
h
1
n
1
n
2
−
1
h
2
−
1
=
h
1
h
2
−
1
h
2
n
1
n
2
−
1
h
2
−
1
.
h_1n_1(h_2n_2)^{-1} = h_1n_1n_2^{-1}h_2^{-1} = h_1h_2^{-1}h_2n_1n_2^{-1}h_2^{-1}.
h1n1(h2n2)−1=h1n1n2−1h2−1=h1h2−1h2n1n2−1h2−1.
因
N
⊲
G
,
h
2
n
1
n
2
−
1
h
2
−
1
∈
N
,
因
H
<
G
,
h
1
h
2
−
1
∈
H
,
因N \lhd G,h_2n_1n_2^{-1}h_2^{-1} \in N,因H < G,h_1h_2^{-1} \in H,
因N⊲G,h2n1n2−1h2−1∈N,因H<G,h1h2−1∈H,
于
是
h
1
n
1
(
h
2
n
2
)
−
1
∈
H
N
,
据
定
理
1.3.1
知
H
N
<
G
,
且
N
⊆
H
N
,
又
于是h_1n_1(h_2n_2)^{-1} \in HN, 据定理1.3.1知HN < G,且N \subseteq HN,又
于是h1n1(h2n2)−1∈HN,据定理1.3.1知HN<G,且N⊆HN,又
π
(
H
N
)
=
{
h
n
N
∣
h
∈
H
,
n
∈
N
}
\quad \pi(HN) = \lbrace hnN | h \in H, n \in N \rbrace
π(HN)={hnN∣h∈H,n∈N}
=
{
h
N
∣
h
∈
H
}
=
π
(
H
)
.
\qquad \qquad = \lbrace hN | h \in H \rbrace = \pi(H).
={hN∣h∈H}=π(H).
即
G
中
包
含
同
态
核
N
的
子
群
H
N
在
π
映
射
下
的
象
集
是
G
/
N
中
的
子
群
π
(
H
)
.
即G中包含同态核N的子群HN在\pi映射下的象集是G/N中的子群\pi(H).
即G中包含同态核N的子群HN在π映射下的象集是G/N中的子群π(H).
据
定
理
1.4.8
①
,
π
建
立
的
双
射
就
把
H
N
对
应
到
π
(
H
)
,
从
而
H
N
=
π
−
1
(
π
(
H
)
)
.
据定理1.4.8 ①,\pi建立的双射就把HN对应到\pi(H),从而HN = \pi^{-1}(\pi(H)).
据定理1.4.8①,π建立的双射就把HN对应到π(H),从而HN=π−1(π(H)).
②
:
因
两
个
子
群
的
交
仍
是
子
群
,
知
(
H
∩
N
)
<
G
,
又
(
H
∩
N
)
⊆
H
,
故
(
H
∩
N
)
<
H
.
再
由
N
⊲
G
,
用
定
义
1.3.4
可
验
证
(
H
∩
N
)
⊲
H
.
再
注
意
到
∀
h
∈
H
,
π
∣
H
(
h
)
=
π
(
h
)
,
便
可
证
明
ker
(
π
∣
H
)
=
H
∩
N
.
②:因两个子群的交仍是子群,知(H \cap N) < G,又(H \cap N) \subseteq H,故(H \cap N) < H.再由N \lhd G,用定义1.3.4可验证(H \cap N) \lhd H.再注意到 \forall h \in H,\pi | _{H}(h) = \pi (h),便可证明 \ker (\pi | _{H}) = H \cap N.
②:因两个子群的交仍是子群,知(H∩N)<G,又(H∩N)⊆H,故(H∩N)<H.再由N⊲G,用定义1.3.4可验证(H∩N)⊲H.再注意到∀h∈H,π∣H(h)=π(h),便可证明ker(π∣H)=H∩N.
③
:
由
①
知
π
(
H
)
=
π
(
H
N
)
=
H
N
/
N
,
所
以
π
是
H
到
H
N
/
N
的
满
同
态
映
射
,
故
据
同
态
基
本
定
理
有
③:由①知\pi(H) = \pi(HN) = HN/N,所以\pi是H到HN/N的满同态映射,故据同态基本定理有
③:由①知π(H)=π(HN)=HN/N,所以π是H到HN/N的满同态映射,故据同态基本定理有
H
/
(
ker
(
π
∣
H
)
≃
H
N
/
N
.
\qquad H/(\ker (\pi | _{H}) \simeq HN/N.
H/(ker(π∣H)≃HN/N.
而
由
②
ker
(
π
∣
H
)
=
H
∩
N
,
故
上
式
就
是
我
们
要
证
的
结
果
.
而由②\ker (\pi | _{H}) = H \cap N,故上式就是我们要证的结果.
而由②ker(π∣H)=H∩N,故上式就是我们要证的结果.