抽象代数 01.04 群的同态与同构

http://www.icourses.cn 南开大学《抽象代数》

§1.4 群的同态与同构 \color{blue}\text{\S 1.4 群的同态与同构} §1.4 群的同态与同构

同态与同构是抽象代数研究代数体系的重要工具。一旦证明了一个代数体系与已知的某代数体系同构,我们就可以在抽象的意义下把它看成是已知的那个代数体系。抽象代数最基本最重要的课题,就是搞清楚各种代数体系在同构意义下的分类。群的同态与同构,则是研究群与群之间关系的重要工具和手段。

定 义 1.4.1 设 { G 1 ; ⋅ } 与 { G 2 ; ∗ } 是 两 个 群 , f 是 G 1 到 G 2 的 一 个 映 射 , 如 果 {\color{blue}定义1.4.1\quad}设 \lbrace G_1; \cdot \rbrace 与 \lbrace G_2; * \rbrace 是两个群,f是G_1到G_2的一个映射,如果 1.4.1{G1;}{G2;}fG1G2
f ( a ⋅ b ) = f ( a ) ∗ f ( b ) , ∀ a , b ∈ G 1 . \qquad f(a \cdot b) = f(a) * f(b), \forall a, b \in G_1. f(ab)=f(a)f(b),a,bG1.
则 称 f 是 G 1 到 G 2 的 一 个 同 态 映 射 , 简 称 同 态 . 则称f是G_1到G_2的一个{\color{blue}同态映射},简称{\color{blue}同态}. fG1G2,.
若 G 1 与 G 2 是 同 一 个 群 , 则 称 f 是 自 同 态 . 若 同 态 f 还 是 单 射 , 则 称 f 是 单 同 态 ; 若G_1与G_2是同一个群,则称f是{\color{blue}自同态}.若同态f还是单射,则称f是{\color{blue}单同态}; G1G2f.ff;
若 同 态 f 还 是 满 射 , 则 称 f 是 满 同 态 . 当 f 是 满 同 态 时 , 称 G 1 与 G 2 是 同 态 的 , 记 为 若同态f还是满射,则称f是{\color{blue}满同态}.当f是满同态时,称G_1与G_2是同态的,记为 f,f.f,G1G2,
G 1 ∼ G 2 . 若 同 态 f 还 是 双 射 ( 双 射 即 可 逆 映 射 , 也 即 是 单 射 又 是 满 射 ) , 则 称 f 是 G_1 \sim G_2.若同态f还是双射(双射即可逆映射,也即是单射又是满射),则称f是 G1G2.f(,),f
G 1 到 G 2 的 一 个 同 构 映 射 , 简 称 同 构 , 此 时 称 群 G 1 与 G 2 是 同 构 的 , 记 为 G 1 ≃ G 2 . G_1到G_2的一个{\color{blue}同构映射},简称{\color{blue}同构},此时称群G_1与G_2是同构的,记为G_1 \simeq G_2. G1G2,,G1G2,G1G2.
例 1 设 V 是 数 域 P 上 的 n 维 线 性 空 间 , f 是 V 的 一 般 线 性 群 G L ( V ) 到 P 中 非 零 元 的 {\color{blue}例1 \quad}设V是数域 \mathbb{P}上的n维线性空间,f是V的一般线性群GL(V)到 \mathbb{P}中非零元的 1VPn线,fV线GL(V)P
乘 法 群 { P ∗ ; ⋅ } 的 映 射 , 乘法群 \lbrace \mathbb{P}^{*}; \cdot \rbrace的映射, {P;},
f ( A ) = det ⁡ ( A ) , ∀ A ∈ G L ( V ) . \qquad f(\mathcal{A}) = \det (\mathcal{A}), \forall \mathcal{A} \in GL(V). f(A)=det(A),AGL(V).
则 f 是 满 同 态 . 这 是 因 为 两 个 线 性 变 换 乘 积 的 行 列 式 等 于 线 性 变 换 行 列 式 的 乘 积 。 则f是满同态.这是因为两个线性变换乘积的行列式等于线性变换行列式的乘积。 f.线线
例 2 设 V 是 n 维 实 线 性 空 间 , 则 G L ( V ) ≃ G L n ( R ) {\color{blue}例2 \quad}设V是n维实线性空间,则GL(V) \simeq GL_n(\R) 2Vn线,GL(V)GLn(R)
证 : 在 V 中 取 一 组 基 { α 1 , ⋯   , α n } , ∀ A ∈ G L ( V ) , 记 A 在 这 组 基 下 的 方 阵 为 f ( A ) , 则 根 据 线 性 代 数 中 的 结 论 知 {\color{blue}证:}在V中取一组基\lbrace \alpha_1, \cdots,\alpha_n \rbrace, \forall \mathcal{A} \in GL(V),记 \mathcal{A} 在这组基下的方阵为f(\mathcal{A}),则根据线性代数中的结论知 :V{α1,,αn},AGL(V),Af(A),线
f : G L ( V ) → G L n ( R ) \quad f:GL(V) \to GL_n(\R) f:GL(V)GLn(R)
是 双 射 , 且 是双射,且
f ( A ⋅ B ) = f ( A ) ⋅ f ( B ) , ∀ A , B ∈ G L ( V ) . \quad f(\mathcal{A} \cdot \mathcal{B}) = f(\mathcal{A}) \cdot f(\mathcal{B}), \forall \mathcal{A}, \mathcal{B} \in GL(V). f(AB)=f(A)f(B),A,BGL(V).
根 据 定 义 1.4.1 , f 是 群 G L ( V ) 到 G L n ( R ) 的 一 个 同 构 映 射 , 故 G L ( V ) ≃ G L n ( R ) . 根据定义1.4.1,f是群GL(V)到GL_n(\R)的一个同构映射,故GL(V) \simeq GL_n(\R). 1.4.1,fGL(V)GLn(R),GL(V)GLn(R).
例 3 设 G 是 一 个 群 , H ⊲ G , 记 π 是 G 到 G / H 的 映 射 , {\color{blue}例3\quad}设G是一个群, H \lhd G, 记 \pi 是G到G/H的映射, 3G,HG,πGG/H,
π ( g ) = g H , ∀ g ∈ G . \quad \pi (g) = gH, \forall g \in G. π(g)=gH,gG.
则 π 是 满 同 态 , 称 π 为 群 G 到 商 群 G / H 的 自 然 同 态 . 则 \pi 是满同态,称 \pi 为群G到商群G/H的{\color{blue}自然同态}. π,πGG/H.
命 题 1.4.1 若 f 是 群 G 1 到 群 G 2 的 同 态 , g 是 群 G 2 到 群 G 3 的 同 态 , {\color{blue}命题1.4.1\quad}{\color{green}若f是群G_1到群G_2的同态,g是群G_2到群G_3的同态,} 1.4.1fG1G2,gG2G3,
则 g f 是 G 1 到 G 3 的 同 态 . 若 f , g 都 是 满 ( 单 ) 同 态 , 则 g f 也 是 满 ( 单 ) 同 态 . {\color{green}则gf是G_1到G_3的同态.若f,g都是满(单)同态,则gf也是满(单)同态.} gfG1G3.f,g(),gf().
若 f , g 都 是 同 构 , 则 g f 也 是 同 构 , 若 f 是 同 构 , 则 f − 1 也 是 同 构 . {\color{green}若f,g都是同构,则gf也是同构,若f是同构,则f^{-1}也是同构.} f,g,gf,f,f1.
命 题 1.4.2 设 f 是 群 G 1 到 群 G 2 的 同 态 , e 1 , e 2 分 别 为 G 1 , G 2 的 幺 元 , {\color{blue}命题1.4.2\quad}{\color{green}设f是群G_1到群G_2的同态,e_1,e_2分别为G_1,G_2的幺元,} 1.4.2fG1G2,e1,e2G1,G2,
则 有 f ( e 1 ) = e 2 即 ∀ a ∈ G 1 , f ( a − 1 ) = f ( a ) − 1 . {\color{green}则有f(e_1)=e_2即\forall a \in G_1,f(a^{-1})={f(a)}^{-1}.} f(e1)=e2aG1,f(a1)=f(a)1.
证 由 f ( e 1 ) = f ( e 1 e 1 ) = f ( e 1 ) f ( e 1 ) , 两 边 左 乘 f ( e 1 ) − 1 , 得 f ( e 1 ) = e 2 . {\color{blue}证\quad}由f(e_1)=f(e_1e_1)=f(e_1)f(e_1),两边左乘{f(e_1)}^{-1},得f(e_1)=e_2. f(e1)=f(e1e1)=f(e1)f(e1),f(e1)1,f(e1)=e2.
∀ a ∈ G 1 , f ( a − 1 ) f ( a ) = f ( a − 1 a ) = f ( e 1 ) = e 2 , 故 f ( a − 1 ) = f ( a ) − 1 . \forall a \in G_1,f(a^{-1})f(a)=f(a^{-1}a)=f(e_1)=e_2,故f(a^{-1})={f(a)}^{-1}. aG1,f(a1)f(a)=f(a1a)=f(e1)=e2,f(a1)=f(a)1.
命 题 1.4.3 设 f 是 群 G 1 到 G 2 的 同 态 , H &lt; G 1 , 则 H 的 像 集 合 f ( H ) 也 是 G 2 的 子 群 , {\color{blue}命题1.4.3\quad}{\color{green}设f是群G_1到G_2的同态,H &lt; G_1,则H的像集合f(H)也是G_2的子群,} 1.4.3fG1G2,H<G1,Hf(H)G2,
特 别 , f ( G 1 ) &lt; G 2 . {\color{green}特别,f(G_1) &lt; G_2.} ,f(G1)<G2.
证 : e 2 = f ( e 1 ) ∈ f ( H ) , 知 f ( H ) 非 空 . ∀ a 2 , b 2 ∈ f ( H ) , 有 a 1 , b 1 ∈ H 使 f ( a 1 ) = a 2 , f ( b 1 ) = b 2 , 于 是 a 2 b 2 − 1 = f ( a 1 ) f ( b 1 ) − 1 = f ( a 1 ) f ( b 1 − 1 ) = f ( a 1 b 1 − 1 ) ∈ f ( H ) . 据 定 理 1.3.1 , f ( H ) &lt; G 2 . {\color{blue}证:}e_2=f(e_1) \in f(H),知f(H)非空.\forall a_2,b_2 \in f(H),有a_1,b_1 \in H使f(a_1) = a_2, f(b_1)=b_2,于是a_2b_2^{-1}=f(a_1){f(b_1)}^{-1}=f(a_1)f(b_1^{-1})=f(a_1b_1^{-1}) \in f(H).据定理1.3.1,f(H) &lt; G_2. :e2=f(e1)f(H),f(H).a2,b2f(H),a1,b1H使f(a1)=a2,f(b1)=b2,a2b21=f(a1)f(b1)1=f(a1)f(b11)=f(a1b11)f(H).1.3.1,f(H)<G2.
定 义 1.4.2 设 f 是 群 G 1 到 群 G 2 的 同 态 , 则 G 2 的 幺 元 e 2 的 完 全 原 像 { a ∈ G 1 ∣ f ( a ) = e 2 } 称 为 同 态 映 射 f 的 核 , 记 为 ker ⁡ f . {\color{blue}定义1.4.2\quad}设f是群G_1到群G_2的同态,则G_2的幺元e_2的完全原像\lbrace a \in G_1 | f(a) = e_2 \rbrace称为{\color{blue}同态映射f的核},记为\ker f. 1.4.2fG1G2,G2e2{aG1f(a)=e2}f,kerf.
例 4 设 G 是 群 , H ⊲ G , π 是 G 到 G / H 的 自 然 同 态 , 则 ker ⁡ π = H . {\color{blue}例4\quad}设G是群,H \lhd G, \pi 是G到G/H的自然同态,则 \ker \pi = H. 4G,HG,πGG/H,kerπ=H.
命 题 1.4.4 设 f 是 群 G 1 到 群 G 2 的 同 态 , 则 ker ⁡ f ⊲ G 1 . {\color{blue}命题1.4.4\quad}{\color{green}设f是群G_1到群G_2的同态,则\ker f \lhd G_1.} 1.4.4fG1G2,kerfG1.
证 : 记 e 1 , e 2 分 别 为 G 1 , G 2 的 幺 元 , 因 e 1 ∈ ker ⁡ f , 故 ker ⁡ f 非 空 . ∀ a , b ∈ ker ⁡ f , 有 {\color{blue}证:}记e_1,e_2分别为G_1,G_2的幺元,因e_1 \in \ker f,故 \ker f 非空.\forall a,b \in \ker f,有 e1,e2G1,G2,e1kerf,kerf.a,bkerf,
f ( a b − 1 ) = f ( a ) f ( b − 1 ) = f ( a ) f ( b ) − 1 = e 2 e 2 − 1 = e 2 . \quad f(ab^{-1}) = f(a)f(b^{-1}) = f(a){f(b)}^{-1}=e_2e_2^{-1}=e_2. f(ab1)=f(a)f(b1)=f(a)f(b)1=e2e21=e2.
故 a b − 1 ∈ ker ⁡ f . 据 定 理 1.3.1 , ker ⁡ f &lt; G 1 . 又 ∀ g ∈ G 1 , a ∈ ker ⁡ f , 有 故ab^{-1} \in \ker f.据定理1.3.1, \ker f &lt; G_1.又\forall g \in G_1,a \in \ker f,有 ab1kerf.1.3.1,kerf<G1.gG1,akerf,
f ( g a g − 1 ) = f ( g ) f ( a ) f ( g − 1 ) = f ( g ) e 2 f ( g ) − 1 = e 2 . \quad f(gag^{-1})=f(g)f(a)f(g^{-1})=f(g)e_2{f(g)}^{-1}=e_2. f(gag1)=f(g)f(a)f(g1)=f(g)e2f(g)1=e2.
故 g a g − 1 ∈ ker ⁡ f . 据 定 义 1.3.4 , ker ⁡ f ⊲ G 1 . 故gag^{-1} \in \ker f.据定义1.3.4,\ker f \lhd G_1. gag1kerf.1.3.4,kerfG1.
命 题 1.4.5 设 f 是 群 G 1 到 群 G 2 的 同 态 , 则 f 是 单 同 态 &ThickSpace; ⟺ &ThickSpace; ker ⁡ f = { e 1 } , {\color{blue}命题1.4.5\quad}{\color{green}设f是群G_1到群G_2的同态,则f是单同态 \iff \ker f = \lbrace e_1 \rbrace,} 1.4.5fG1G2,fkerf={e1},
这 里 e 1 是 G 1 的 幺 元 . {\color{green}这里e_1是G_1的幺元.} e1G1.
证 : “ ⇒ ” : 据 命 题 1.4.2 知 , f ( e 1 ) = e 2 , 故 { e 1 } ⊆ ker ⁡ f , 又 ∀ a ∈ ker ⁡ f , f ( a ) = e 2 = f ( e 1 ) , 因 f 是 单 射 , a = e 1 , 故 ker ⁡ f ⊆ { e 1 } . {\color{blue}证:}“\Rightarrow”:据命题1.4.2知,f(e_1)=e_2,故\lbrace e_1 \rbrace \subseteq \ker f,又\forall a \in \ker f,f(a) = e_2 = f(e_1),因f是单射,a=e_1,故\ker f \subseteq \lbrace e_1 \rbrace. :1.4.2,f(e1)=e2,{e1}kerf,akerf,f(a)=e2=f(e1),f,a=e1,kerf{e1}.
“ ⇐ ” : 若 f ( a ) = f ( b ) , a , b ∈ G 1 , 则 f ( a b − 1 ) = f ( a ) ⋅ f ( b ) − 1 = e 2 , 故 a b − 1 ∈ ker ⁡ f , 现 ker ⁡ f = { e 1 } , 故 a b − 1 = e 1 , 即 a = b , 故 f 是 单 同 态 . “\Leftarrow”:若f(a)=f(b),a,b \in G_1,则f(ab^{-1})=f(a)\cdot {f(b)}^{-1} = e_2,故ab^{-1} \in \ker f,现\ker f = \lbrace e_1 \rbrace,故ab^{-1}=e_1,即a=b,故f是单同态. f(a)=f(b),a,bG1,f(ab1)=f(a)f(b)1=e2,ab1kerf,kerf={e1},ab1=e1,a=b,f.
定 理 1.4.6 ( 群 的 同 态 基 本 定 理 ) 设 f 是 群 G 1 到 群 G 2 的 满 同 态 映 射 , 则 G 1 / ker ⁡ f ≃ G 2 . {\color{blue}定理1.4.6(群的同态基本定理)\quad}{\color{green}设f是群G_1到群G_2的满同态映射,则G_1/\ker f \simeq G_2.} 1.4.6()fG1G2,G1/kerfG2.
证 : 记 N = ker ⁡ f , 据 命 题 1.4.4 知 , N ⊲ G 1 . 令 {\color{blue}证:}记N = \ker f,据命题1.4.4知,N \lhd G_1.令 :N=kerf,1.4.4,NG1.
ϕ : G 1 / N → G 2 \qquad \phi:G_1/N \to G_2 ϕ:G1/NG2
g N ↦ f ( g ) \qquad gN \mapsto f(g) gNf(g)
则 ϕ 是 G 1 / N 到 G 2 的 映 射 , 因 若 g 1 N = g 2 N , g 1 , g 2 ∈ G 1 , 据 推 论 1.3.5 知 g 1 − 1 g 2 ∈ N , 故 f ( g 1 − 1 g 2 ) = e 2 , 即 f ( g 1 ) − 1 f ( g 2 ) = e 2 , 故 f ( g 1 ) = f ( g 2 ) . 这 表 明 G 1 / N 中 任 一 元 素 在 ϕ 下 有 唯 一 的 像 , 所 以 ϕ 是 映 射 . 则\phi是G_1/N到G_2的映射,因若g_1N=g_2N,g_1,g_2 \in G_1,据推论1.3.5知g_1^{-1}g_2 \in N,故f(g_1^{-1}g_2)=e_2,即{f(g_1)}^{-1}f(g_2)=e_2,故f(g_1)=f(g_2).这表明G_1/N中任一元素在\phi下有唯一的像,所以\phi是映射. ϕG1/NG2,g1N=g2N,g1,g2G1,1.3.5g11g2N,f(g11g2)=e2,f(g1)1f(g2)=e2,f(g1)=f(g2).G1/Nϕ,ϕ.
其 次 , 上 边 一 段 可 以 逆 推 回 去 : f ( g 1 ) = f ( g 2 ) ⇒ g 1 N = g 2 N , ∀ g 1 , g 2 ∈ G 1 , 因 此 ϕ 是 单 射 . 其次,上边一段可以逆推回去:f(g_1)=f(g_2) \Rightarrow g_1N=g_2N,\forall g_1,g_2 \in G_1,因此\phi是单射. ,:f(g1)=f(g2)g1N=g2N,g1,g2G1,ϕ.
再 由 f 是 满 射 , 知 ϕ 也 是 满 射 , 从 而 ϕ 是 双 射 . 再由f是满射,知\phi也是满射,从而\phi是双射. f,ϕ,ϕ.
∀ a N , b N ∈ G / N , 由 f 是 同 态 , 有 \forall aN, bN \in G/N,由f是同态,有 aN,bNG/N,f,
ϕ ( a N ⋅ b N ) = ϕ ( a b N ) = f ( a b ) \phi(aN \cdot bN) = \phi(abN) = f(ab) ϕ(aNbN)=ϕ(abN)=f(ab)
= f ( a ) f ( b ) = ϕ ( a N ) ⋅ ϕ ( b N ) , \qquad = f(a)f(b) = \phi(aN) \cdot \phi(bN), =f(a)f(b)=ϕ(aN)ϕ(bN),
所 以 ϕ 还 是 同 态 映 射 , 于 是 ϕ 是 同 构 映 射 , 故 G 1 / N ≃ G 2 . 所以\phi还是同态映射,于是\phi是同构映射,故G_1/N \simeq G_2. ϕ,ϕ,G1/NG2.
这个定理的结论,是两个群同构,而在抽象的意义下,两个同构的群,是相同的群。所以,这一定理是很重要的,称为群的同态基本定理。
推 论 1.4.7 设 G 为 一 群 , f 是 G 到 另 一 群 的 同 态 映 射 , 则 G 的 同 态 象 f ( G ) 必 同 构 于 {\color{blue}推论1.4.7\quad}{\color{green}设G为一群,f是G到另一群的同态映射,则G的}{\color{blue}同态象}{\color{green}f(G)必同构于} 1.4.7G,fG,Gf(G)
G 的 商 群 G / ker ⁡ f ; 反 之 , G 的 任 一 商 群 都 可 看 作 G 的 同 态 象 . {\color{green}G的商群G/\ker f;反之,G的任一商群都可看作G的同态象.} GG/kerf;,GG.
证 : 是 f 是 G 到 G ′ 的 同 态 , 则 f 也 可 看 作 G 到 f ( G ) 的 满 同 态 , 故 据 定 理 1.4.6 , 有 G / ker ⁡ f ≃ f ( G ) . {\color{blue}证:}是f是G到G^{\prime}的同态,则f也可看作G到f(G)的满同态,故据定理1.4.6,有G/\ker f \simeq f(G). :fGG,fGf(G),1.4.6,G/kerff(G).
反 之 , 设 G / N 是 G 的 任 一 商 群 , 即 有 N ⊲ G , 则 G 到 G / N 的 自 然 同 态 π 是 满 同 态 , 故 G / N 可 看 作 G 的 同 态 象 π ( G ) . 反之,设G/N是G的任一商群,即有N \lhd G,则G到G/N的自然同态\pi是满同态,故G/N可看作G的同态象\pi(G). ,G/NG,NG,GG/Nπ,G/NGπ(G).
两个群间的任一满同态映射,都可看作一个群到某一个商群上的自然同态;要找出一个群G的所有同态象,就相当于找出G的所有的商群,也就相当于找出G的所有正规子群.
定 理 1.4.8 设 f 是 群 G 1 到 群 G 2 的 满 同 态 , N = ker ⁡ f , 则 {\color{blue}定理1.4.8\quad}{\color{green}设f是群G_1到群G_2的满同态,N= \ker f,则} 1.4.8fG1G2,N=kerf,
① f 建 立 了 G 1 中 包 含 N 的 子 群 与 G 2 中 子 群 间 的 双 射 ; {\color{green}①f建立了G_1中包含N的子群与G_2中子群间的双射;} fG1NG2;
② 上 述 双 射 把 正 规 子 群 对 应 到 正 规 子 群 ; {\color{green}②上述双射把正规子群对应到正规子群;} ;
③ 若 H ⊲ G 1 , N ⊆ H , 则 G 1 / H ≃ G 2 / f ( H ) . {\color{green}③若H \lhd G_1,N \subseteq H,则G_1/H \simeq G_2/f(H).} HG1,NH,G1/HG2/f(H).
推 论 1.4.9 设 G 是 群 , N ⊲ G , π 是 G 到 G / N 的 自 然 同 态 , 则 π 建 立 了 G 中 包 含 N {\color{blue}推论1.4.9\quad}{\color{green}设G是群,N \lhd G,\pi 是G到G/N的自然同态,则\pi建立了G中包含N} 1.4.9G,NG,πGG/N,πGN
的 子 群 与 G / N 的 子 群 间 的 双 射 , 而 且 把 正 规 子 群 对 应 到 正 规 子 群 . 又 若 H ⊲ G , {\color{green}的子群与G/N的子群间的双射,而且把正规子群对应到正规子群.又若H \lhd G,} G/N,.HG,
N ⊆ H , 则 G / H ≃ ( G / N ) / ( H / N ) . {\color{green}N \subseteq H,则G/H \simeq (G/N)/(H/N).} NH,G/H(G/N)/(H/N).
从推论1.4.7知,一个群的同态象总与该群的某一商群同构,故在讨论满同态时,我们可以只考虑群到它的商群上的自然同态,而不失一般性。
下面定理中谈到的群G的子群H,不再有“包含同态核N”的限制。
定 理 1.4.10 设 G 是 群 , N ⊲ G , π 是 G 到 G / N 的 自 然 同 态 , H &lt; G , 则 {\color{blue}定理1.4.10\quad}{\color{green}设G是群,N \lhd G, \pi 是G到G/N的自然同态,H&lt;G,则} 1.4.10G,NG,πGG/N,H<G,
① H N 是 G 中 包 含 N 的 子 群 , 且 H N = π − 1 ( π ( H ) ) . {\color{green}①HN是G中包含N的子群,且HN = \pi^{-1}(\pi(H)).} HNGN,HN=π1(π(H)).
即 H N 是 H 在 π 映 射 下 的 象 集 合 π ( H ) 的 完 全 原 象 π − 1 ( π ( H ) ) . {\color{green}即HN是H在\pi映射下的象集合\pi(H)的完全原象\pi^{-1}(\pi(H)).} HNHππ(H)π1(π(H)).
② ( H ∩ N ) ⊲ H , 且 ker ⁡ ( π ∣ H ) = H ∩ N . {\color{green}②(H \cap N) \lhd H, 且 \ker (\pi |_{H}) = H \cap N.} (HN)H,ker(πH)=HN.
③ H N / N ≃ H / ( H ∩ N ) . {\color{green}③HN/N \simeq H/(H \cap N).} HN/NH/(HN).
证 : ① : ∀ h 1 , h 2 ∈ H , ∀ n 1 , n 2 ∈ N , 即 ∀ h 1 n 1 , h 2 n 2 ∈ H N , {\color{blue}证:}①: \forall h_1,h_2 \in H, \forall n_1,n_2 \in N, 即 \forall h_1n_1, h_2n_2 \in HN, ::h1,h2H,n1,n2N,h1n1,h2n2HN,
h 1 n 1 ( h 2 n 2 ) − 1 = h 1 n 1 n 2 − 1 h 2 − 1 = h 1 h 2 − 1 h 2 n 1 n 2 − 1 h 2 − 1 . h_1n_1(h_2n_2)^{-1} = h_1n_1n_2^{-1}h_2^{-1} = h_1h_2^{-1}h_2n_1n_2^{-1}h_2^{-1}. h1n1(h2n2)1=h1n1n21h21=h1h21h2n1n21h21.
因 N ⊲ G , h 2 n 1 n 2 − 1 h 2 − 1 ∈ N , 因 H &lt; G , h 1 h 2 − 1 ∈ H , 因N \lhd G,h_2n_1n_2^{-1}h_2^{-1} \in N,因H &lt; G,h_1h_2^{-1} \in H, NG,h2n1n21h21N,H<G,h1h21H,
于 是 h 1 n 1 ( h 2 n 2 ) − 1 ∈ H N , 据 定 理 1.3.1 知 H N &lt; G , 且 N ⊆ H N , 又 于是h_1n_1(h_2n_2)^{-1} \in HN, 据定理1.3.1知HN &lt; G,且N \subseteq HN,又 h1n1(h2n2)1HN,1.3.1HN<G,NHN,
π ( H N ) = { h n N ∣ h ∈ H , n ∈ N } \quad \pi(HN) = \lbrace hnN | h \in H, n \in N \rbrace π(HN)={hnNhH,nN}
= { h N ∣ h ∈ H } = π ( H ) . \qquad \qquad = \lbrace hN | h \in H \rbrace = \pi(H). ={hNhH}=π(H).
即 G 中 包 含 同 态 核 N 的 子 群 H N 在 π 映 射 下 的 象 集 是 G / N 中 的 子 群 π ( H ) . 即G中包含同态核N的子群HN在\pi映射下的象集是G/N中的子群\pi(H). GNHNπG/Nπ(H).
据 定 理 1.4.8 ① , π 建 立 的 双 射 就 把 H N 对 应 到 π ( H ) , 从 而 H N = π − 1 ( π ( H ) ) . 据定理1.4.8 ①,\pi建立的双射就把HN对应到\pi(H),从而HN = \pi^{-1}(\pi(H)). 1.4.8,πHNπ(H),HN=π1(π(H)).
② : 因 两 个 子 群 的 交 仍 是 子 群 , 知 ( H ∩ N ) &lt; G , 又 ( H ∩ N ) ⊆ H , 故 ( H ∩ N ) &lt; H . 再 由 N ⊲ G , 用 定 义 1.3.4 可 验 证 ( H ∩ N ) ⊲ H . 再 注 意 到 ∀ h ∈ H , π ∣ H ( h ) = π ( h ) , 便 可 证 明 ker ⁡ ( π ∣ H ) = H ∩ N . ②:因两个子群的交仍是子群,知(H \cap N) &lt; G,又(H \cap N) \subseteq H,故(H \cap N) &lt; H.再由N \lhd G,用定义1.3.4可验证(H \cap N) \lhd H.再注意到 \forall h \in H,\pi | _{H}(h) = \pi (h),便可证明 \ker (\pi | _{H}) = H \cap N. :,(HN)<G,(HN)H,(HN)<H.NG,1.3.4(HN)H.hH,πH(h)=π(h),便ker(πH)=HN.
③ : 由 ① 知 π ( H ) = π ( H N ) = H N / N , 所 以 π 是 H 到 H N / N 的 满 同 态 映 射 , 故 据 同 态 基 本 定 理 有 ③:由①知\pi(H) = \pi(HN) = HN/N,所以\pi是H到HN/N的满同态映射,故据同态基本定理有 :π(H)=π(HN)=HN/N,πHHN/N,
H / ( ker ⁡ ( π ∣ H ) ≃ H N / N . \qquad H/(\ker (\pi | _{H}) \simeq HN/N. H/(ker(πH)HN/N.
而 由 ② ker ⁡ ( π ∣ H ) = H ∩ N , 故 上 式 就 是 我 们 要 证 的 结 果 . 而由②\ker (\pi | _{H}) = H \cap N,故上式就是我们要证的结果. ker(πH)=HN,.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值